
//f dE- I;;-9/Y

AN ARBITRARY GRID CFD

ALGORITHM FOR

CONFIG URA TION AERODYNAMICS

ANALYSIS

Vol. 1. Theory and Validations

Prepared by:

A. J. Baker, G. S. Iannelli, P.D. Manhardt and J. A. Orzechowski

COMPUTATIONAL MECHANICS CORPORATION

Prepared for:
NASA Ames Research Center

Moffett Field, California

FINAL REPORT FOR SBIR PHASE II

CONTRACT NO.: NAS2-12568

Report: CMC TR2.1 - 94

December 1993

COMPUTATIONAL MECHANICS CORPORATION

601 Concord Street, Suite 116

Knoxville, TN 37919-3382 U.S.A.

Phone: (615) 546-3664

FAX: (615) 546.7463

emaih ajbaker @comco3.akcess.com

,,t"

o',

r_

I

o',

Z

m

U

r-"

r7

ac 0

>-0 a_

¢1[ tJ.. i ¢_ .--
Z_Z

""0 '_[ 0 _

u'_ "r tr_ > r-

r..:OE
,_ (:3 _ ua 0 @,

0

0
0



Table of Contents

lo

o

G

.

.

Abstract

Nomenclature

Figures and Tables

INTRODUCTION

THE AERODYNAMICS PROBLEM STATEMENT

2.1 Synopsis

2.2 Conservation law systems

2.3 Turbulence, Reynolds-averaging

2.4 Non-dimensionalizafion

2.5 Canonical form

2.6 Well-posed boundary conditions

APPROXIMATION, ERROR CONSTRAINT

3.1 Overview

3.2 Approximation, measure of error

3.3 Error extremization, the weak statement

3.4 Spatial semi-discrefization, finite volume, finite element

3.5 Fully discrete form, algebraic statement

3.6 Summary

WELL-POSEDNESS, STABILITY, CONVERGENCE

4.1 Overview

4.2 WeU-posedness, boundary conditions

4.3 Stability, Taylor dissipation

4.4 Accuracy, asymptotic convergence

4.5 Stability, artificial dissipation

4.6 Summary

THE REM/AERO CFD ALGORITHM

5.1 Synopsis

5.2 Finite element TWS h algorithm nomenclature

5.3 REMI algorithm matrix statement illustrations

iv

vi

ix

Page

1

5

5

5

8

9

10

14

15

15

15

16

17

21

23

25

25

25

29

32

33

39

43

43

43

51



5.4 The REMI RaNS/E algorithm

5.5 Summary

6. AUXILIARY PROCEDURES, LINEAR ALGEBRA

6.1 Synopsis

6.2 Initial condition generation

6.3 Implicit Runge-Kutta algorithm

6.4 Equilibrium reacting air algorithm

6.5 Tensor matrix product factorization

6.6 Summary

Page

56

64

65

65

65

67

70

71

77

7. DISCUSSION AND RESULTS

7.1 Synopsis

7.2 Subsonic inviscid verifications, d=2,3

7.3 Transonic inviscid verifications, benchmarks, d=2

7.4 Supersonic inviscid verifications, d=2

7.5 Hypersonic Euler verification, validation, d=2 axisymmetric

7.6 Viscous transonic benchmark, validation, d=2

79

79

79

88

93

100

104

8. SUMMARY AND CONCLUSIONS 111

References 117

Appendices

A. AKCESS.AERO REMI template, d=2, Newton

B. TWS h FE REMI algorithm, d= 1,2,3

C. AKCESS.AERO template, d=2, TP quasi-Newton

D. AKCESS.AERO REMI template, quasi-Newton, d=3

122

133

137

151

°°.

III



Abstract

The solicitation for the SBIR Phase I project requested design and critical

evaluation of a CFD algorithm applicable to three-dimensional configuration

aerodynamics analysis, using an "arbitrary grid not requiring a well-ordered, body-

fitted coordinate system for robustness." The Phase I project completion contributed

to derivation of a "Taylor weak statement (TWS)" CFD algorithm, applicable to

unsteady transonic potential, Euler and Reynolds-averaged Navier-Stokes

conservation law systems, possessing the following attributes:

• completion of all theoretical details in the continuum employing
calculus and vector field theory

• intrinsic embedding of sixteen previously published numerical

dissipation methodologies for shock capturing and stability

• a continuum Galerkin weak statement extremizing conservation law

approximate solution error for any approximation specification

• amenable to any (finite volume, finite element) spatial semi-
discretization

• useable with any time discretization, implicit, explicit or multi-step

• a fully discrete theory algebraic system eligible for any appropriate

quasi-Newton iteration method using sparse, block-banded and/or
stationary relaxation solvers

The Phase I project results provided the theoretical foundation for selection of

specific options for coding and verification in a Phase II project. The level for each

theoretically independent option was selected as follows:

• Euler, laminar flow and

conservation law systems
Reynolds-averaged Navier-Stokes

• a diagonal scalar simplification to the TWS numerical dissipation
construction

• well-posed boundary conditions for continuum Taylor weak

statement Euler/Navier-Stokes constructions using Lyapunov
stability methodology

iv



a finite element spatial semi-discretization using linear tensor product

quadrilateral (hence hexahedral) elements of potentially arbitrary
distortion

• single step 0-implicit and a B-stable, two-stage implicit Runge-Kutta
time discretizations

• a block-banded, mesh-sweeping quasi-Newton iteration algorithm via

matrix tensor products

@ algebraic, block mesh strategy for verification, benchmark and

validation problems, extensible to prototype three-dimensional

aerodynamics geometries.

The original proposed scope of the Phase II project anticipated coding and

verification for turbulent and three-dimensional flows about a generic fighter and a

lex-delta configuration. As the project evolved, it became very apparent that

achieving this goal from the given starting point, in the two-year performance period,

was an impossibility. The project was therefore formally continued for two

additional years, at no added cost, to provide time needed to thrash out the myriad

details associated with the new algorithm. In this extension, a two-dimensional

(only) research code (FEMNAS) was developed to confirm necessary operational

details and to establish verification, benchmark and validation results. The restriction

to two-dimensions was a practical necessity, especially since the tensor product quasi-

Newton jacobian proved difficult to accurately develop for arbitrarily-distorted

meshings.

The results of these fundamental 2-D simulations for transonic, supersonic and

hypersonic inviscid and laminar-viscous flow test cases constitutes the major

verifications reported herein. Additionally, the 3-D algorithm and associated quasi-

Newton tensor product jacobian are fully presented herein, along with very basic

verification and benchmark tests results. The 3-D theory is only now approaching

operational readiness in the production AKCESS.,, code, which is briefly described

and detailed.
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I. INTRODUCTION

The work plan of this SBIR Phase II contractual project called for derivation, coding

and broad-range validation of a new finite element CFD algorithm, stable, accurate and

efficient on absolutely arbitrary meshings. The focus was on application to

configuration aerodynamics analyses for general three-dimensional geometries using

inviscid flow (Euler), laminar, and Reynolds-averaged Navier-Stokes (RaNS)

simulations. Adjunct to this was generation of discretizations of three-dimensional

regions, bounded by aerodynamics surfaces, with meshing versatility commensurate

with the capabilities of a CFD algorithm itself.

In the past two decades the CFD community has witnessed an exceptional

expenditure of resources, both technical personnel and computer, applied to the

configuration aerodynamics CFD analysis requirement. The historic Euler

aerodynamics development was the MacCormack (1969) explicit CFD algorithm, which

originally appeared inappropriate for RaNS applications due to meshing-induced

parasitic stiffness. (It has since enjoyed a rebirth, due to its total vectorizability.)

Several research projects were thereby initiated in the middle 1970s, leading to

development of the Beam-Warming (1976) implicit factored algorithm, designed for

efficient iteration with relative insensitivity to parasitic stiffness.

Both the MacCormack and Beam-Warming CFD theories employed added artificial

diffusion, viewed as both a theoretical detraction and a potential compromise to

genuine viscous aerodynamics analysis. This prompted development of flux vector

splitting methods for hyperbolic conservation law systems, with extension to RaNS via

dissipative flux-vector central differencing. Many variants were developed, e.g.,

Steger-Warming (1978), vanLeer (1982), Osher (1978), Roe (1981), all employing some

combination of Riemann solvers, averaged-states and directional upwind differencing.

The common distinguishing feature was absence of specifically-added artificial

diffusion. However, numerical diffusion was intrinsic to characteristic-direction

differencing, and a variety of switches for stencil expansion were developed to avoid

the low order accuracy of direct upwind differencing.

These various CFD algorithms were code-implemented using finite difference or

finite volume spatial semi-discretizations. The abiding character was use of structured,

nominally-uniform cartesian meshings on the transformed computational domain,

following a boundary-fitted coordinate transformation from the transformed

aerodynamics geometry. An alternative spatial semi-discretization procedure emerged



in the 1980's, using potentially "absolutely non-structured meshings" of finite elements

in the physical domain, e.g., Loehner, et al (1984), Oden, et al (1986). The application

codes were time explicit, generally restricted to Euler simulations and employed

specifically added numerical dissipation derived from the Taylor Galerkin

generalization (Donea 1984) of the Lax-Wendroff method. Locally refined applications

using nested triangles and tetrahedra were demonstrated, and meshing and FE basis

(termed "hp") solution adaptive methodology appeared promising for enhanced

accuracy with degree-of-freedom efficiency via local error estimation.

This bright promise is moderated by associated computational issues such as large

memory requirements, parasitic stiffness, mesh generation/adaptation procedures and

extra solution steps to compute error measure data for mesh refinement/de-refinement.

Without exception the extension to RaNS applications has moved to structured

cartesian mesh embedding in boundary layer regions, at least, and use of operator-

splitting implicit time integration methods to handle parasitic stiffness. Coincidentally,

triangle/tetrahedra meshings have since become amenable to finite volume CFD

constructions, c.f., Barth, et al (1991).

From this view in 1987, the Phase 11 project sought to derive, code and validate the

ingredients of a CFD algorithm that exhibited arbitrary mesh versatility and solution

adaptability with mathematical robustness, quality (Euler) shock-capturing, and direct

extension to (meshing requirements for) genuine RaNS applications. The decisions

hopefully leading to attainment of this goal were:

weak statement for extremization of approximation error

Taylor-series Euler/RaNS flux vector manipulation to produce

continuum conservation law systems with intrinsic dissipation

well-posed boundary conditions, suitable for Euler and RaNS,

enforceable via weak statement generated surface integrals

ideal and real-gas equations of state

0-implicit one step and implicit two step Runge-Kutta time
discretizations

linear basis, tensor product finite element spatial semi-discretization
of quads/hexahedra

matrix tensor product derived quasi-Newton block-banded linear

algebra iteration

algebraic, block meshing amenable to solution adaptivity

We considered the above combination, if successful, would lead to attainment of

the goal, i.e., an arbitrary mesh, configuration aerodynamics CFD algorithm, applicable

2
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to both Euler and RaNS conservation law descriptions. In our view, these selections

circumvented some detractions of previous constructions, while exhibiting potential for

mathematical robustness, code operating efficiency and use of "arbitrary" meshings.

However, the volume of detail required to achieve the verification capability of the

goal was severely under-estimated, to the extent that only a fledgling, two-dimensional

verification/benchmark capability on rather regular meshings accrued to the project-

end after a period spanning two years. Practical factors contributing to this slow

progress included delayed delivery of our SGI Model 3300 workstation (6 months) and

practical difficulties in remote operation on the NASA Ames central computer (before

NASNET and T-1 communication speed were available). Theoretical and code practice

factors also played a central contributing role, as the elegantly clean theory proved

incomplete in the key areas of numerical dissipation and tensor product matrix algebra

procedures on "arbitrary" (highly distorted) meshings.

These several issues contributed to the need to request a no-cost extension over

additional years. During this period, a dedicated theoretical effort pursued by Iannelli,

as he developed his dissertation (1991), lead to resolution of many algorithmic issues,

both theoretical and practical. Benchmarks and validations were executed by his

developed FEMNAS computer code, limited to two-dimensional form as a practical

necessity. The range of transonic, supersonic and hypersonic Euler and laminar

Navier-Stokes problem statements for benchmark and validations reported herein were

generated by this code.

The reported CFD results constitute a comprehensive, positive assessment of the

developed arbitrary-grid, finite element weak statement CFD REMI algorithm..

Although limited to two-dimensions, high quality essentially non-oscillatory (ENO)

approximation to shocks in transonic, supersonic and hypersonic flows is achieved,

using block solution-adaptive remeshing with a simplified diagonal form for the _term

of the underlying TWS h theory. The resultant meshings are highly non-rectangular

and all subsonic and supersonic far-field flows leave the computational domain

without oscillation, via appropriate evaluations on the weak statement-generated

surface integrals. The implicit Runge-Kutta time-marching algorithm appears a truly

viable, stiffly-stable and second order accurate replacement for the 0-implicit single

step Euler family. It is useful for shock capturing as well as handling the parasitic

stiffness generated via boundary layer meshing with transverse resolution on the order

of inverse Reynolds number. The range of these results are discussed following

derivation and definition of the developed arbitrary grid finite element CFD algorithm.

3



As these advances became achieved, the three-dimensional algorithm has become

operational in our emerging AKCESS., software platform, the successor "code" to

previously established "research" codes. The resultant 3-D TWS h CFD "REMr' FE

algorithm is thoroughly detailed herein, including the 3-D tensor product factorized

quasi-Newton jacobian. Only modest verification-level 3-D Euler numerical results

generated by AKCESS.* to date are available and included. However, we expect to

move rapidly to recovery of reported FEMNAS tests, as well as benchmark extensions

to 3-D, as AKCESS.* moves to operational readiness in its parallel-processing

implementation.

The near-term emergence of this versatile software platform, specifically designed

to greatly shorten the time to implement/validate theoretical and/or practical musings,

we hope warrants the significant government and personal resources committed to

project completion. We have certainly learned a lasting lesson on estimating the effort

required to convert CFD theory to genuine, robust and convergent code practice.

4



2. THE AERODYNAMICS PROBLEM STATEMENT

2.1 Synopsis

The goal is to establish a robust, accurate and efficient CFD algorithm for Euler

and Navier-Stokes conservation law systems describing the flow state in a

configuration aerodynamics problem statement. This section establishes the associated

mathematical descriptions, including closure model statements for thermodynamics

and dissipation mechanisms. Following nondimensionalization, an eigenvalue analysis

leads to mathematical characterization of the developed conservation law systems.

2.2 Conservation law systems

The basic assumption is that newtonian conservation statements for mass,

momentum and energy, coupled with closure expressions for thermodynamics, and

dissipative and modeled-turbulence mechanisms, yields the desired mathematical

description. Denote the created set of dependent variables, usually called the state

variable, as q=q(x,t), where "q" is understood to denote an array. Then, the

Euler/Navier-Stokes conservation law system, i.e., the governing non-linear, partial

differential equation (PDE) set, is familiarly expressed as

°q÷ l,

In (2.1), and in the following, L(-) denotes the homogeneous form of a

differential equation, xj is a scalar resolution of the (global) x coordinate system

spanning a region f2 of d-dimensional Euclidean space 9_d (1< d < 3), and t denotes

time. Therefore, the domain of definition of (2.1) is R + x f2 with R + the positive real

number field spanned by I and Dc _d _ (x.lxl<_).

For aerodynamics, the state variable is usually selected as q(x,t),= {p.m, EIT"

where {.} denotes a column array (matrix) and superscript "T" denotes its transpose.

Therein, p is fluid density, m is the momentum vector with scalar resolution m i = Pui,

where u i is termed "velocity," and E=pe is the volume specific total internal energy.

Continuing in (2.1),_ is the scalar resolution of the kinetic flux vector f, while fjv

is the corresponding resolution of the dissipative flux vector fv. Finally, s is a source term

array, included for generality as needed, dependent on closure modeling. Both flux

vectors contain pressure, and the corresponding equation of state functional form is

p = p(q) = p(p,m.E).

For the Euler and/or Navier-Stokes description, the cartesian tensor form for the

terms in (2.1), for laminar viscous flow with heat transfer, is



1q= i , f=_= mimj/p+p6ij , fv=4v= aij

I(E+p)mj/p J [c_ijmi/P-qj

(2.2)

Note that "i" is a free index in the second lines in (2.2), with range 1 < i < d, where d is

the problem statement dimensionality. The state variable form for the polytropic
perfect gas equation of state is

P = (7-1)(E- mim i/2p) (2.3)

where _ is the ratio of specific heats. The Stokes stress tensor and Fourier heat flux

vector definitions are

lO(m Ip) o_(m./n)
aij=_(T)| ., i + .,l

t oxj ox i
(2.4)

(z5)

where Ix is the fluid absolute viscosity, k is the fluid thermal conductivity, and both

depend on the temperature T= T(p,p).

Ultimately, pressure, hence the equation of state, plays a central role in

algorithm construction and in boundary condition well-posedness for (2.1). The

familiar polytropic perfect gas law form is

p=p R T (2.6)

where R is the gas law constant (equal to the universal constant divided by molecular

mass). The formulational connections between p and q lead to the following useful

equations for a perfect gas

E = pe = pc+ mim i/2p

F.., cvT = RT / ('y- 1) (2.7)

P = (7 - l)pE

In (2.7), E is the mass specific internal energy (usually denoted "u" in thermodynamics
texts), and y = Cp/cv is the specific heat ratio.

The aerodynamics class of long-term interest extends to inclusion of real-gas

effects, as occurs at hypersonic flight Mach number in the atmosphere. An expository

formulation is a five species reacting air model, whereupon the Dalton's law

generalization of (2.6) is

5y

6



where R (not italicized) is the universal gas constant, M i is the molecular mass of the

fth species, and Yi is the associated mass fraction. For species ordering (O, N, NO, 02,

N2), for 1 < i < 5, the replacement expression for specific internal energy (2.7) is

5 Y. 5 5 RoV'/Mit
+'=-RT Y ..../__z+ _ Y.c .T+ Y Y.

i=3
i=l Mi i=l ' P' ' exp(OV /T)-I

3
+ Y Y.h 0 (2.9)

i=l z t

where Cpi = 5 / 2(R / M i),i = 1,2, Cpi = 5 / 2(R / M i) ,i = 1,2, and Cpi = 7 / 2(R / M i), i = 3, 4, 5. Further,

in (2.9) h° is the formation enthalpy and 0 v is the characteristic vibrational temperature

of species i. Thus, E is now comprised of species formation energy, the molecular

translational and rotational kinetic energies, and the molecular vibrational potential

energy, with equilibrium magnitude characterized by static temperature T.

The exchange reactions for the five species air model are

pO/2+M <--_20+ M
2 +M _-_ 2N+ M (2.10)

N 2+O 2+M+-+2NO+M

where M denotes a collision factor. The law of mass action (Anderson, 1989) applied

to (2.10) requires

" = --= --3 = (2.11)
Y5 pM5 " Y4 pM4 "Y4Y5 M4M5

where KI(T), K2(T) and K3(7" ) are the available equilibrium reaction relations (c.f., Park,

1989). The mass action relations (2.11) constitute three constraints on the five mass

fractions Yi. The additional constraints are global mass conservation
5

_E_ _" = l (2.12)

i=l

and uniformity of the proportion of oxygen to nitrogen nuclei for air, i.e.

Y, Y.
(Y1 Y3 Y4 _ Y' "3 +2 "5 ]/79 (2.13)
LMl+M3+2M4J/21=_22+M 3 M5)

The algorithmic procedure developed to solve (2.8)-(2.13) is detailed in a latter section.

The final step to closure of (2.1)-(2.5) is definition of the functional relationship

for _t(T) and k(T) in (2.4)-(2.5). For the Euler description, these data are identically zero.

Otherwise, referenced to the standard atmosphere at T r = 273.1K (529R), the

Sutherland's correlations are (White, 1978)



¢T131 ¢

where _r and kr are data at T r and for air,

(2.14)

(a _ 0. 4048 and @--- 0.7120 in SI units.

2.3. Turbulence, Reynolds-averaging

At flight conditions, the presented Navier-Stokes description requires a

manipulation, commonly termed "Reynolds-averaging," to establish an aerodynamics

conservation law statement amenable to computing for turbulent flows. (The exception

is when one uses a "direct numerical simulation (DNS)" procedure, cf., Moin(1992),

which seeks highly time-accurate evolution of a geometrically-elementary model

description.) Numerous Reynolds-averaging procedures are available, ranging from

sub-grid scale (SGS) modeling to time- or volume-based single point correlations.

Renormalization group theory (RNG) has emerged recently, Yakhot, et al, (1986), as a

replacement theory for establishing the range of historical Reynolds-averaged

constructions and closure models, as well for deriving new formulations.

With brevity, the end-point of a Reynolds-averaging procedure replaces the state

variable entries with the corresponding "mean" variables {p,m,E} T, with

corresponding kinetic flux vector variable notation. The dissipative flux vector

becomes augmented to the form

¢
0

¢iij -Puiuj

ciij -Puiuj )mi /p-qj-'_ 7

(2.15)

In (2.15) a superscript overbar denotes a "Reynolds-average" of the indicated variable

product, and the enthalpy definition is h=(e+p/p). The new unknowns introduced into

(2.2) via (2.15) are termed the "Reynolds stress tensor" pu_ and the turbulent heat

flux vector h-'_j, where u i remains the velocity, i.e., the ratio mi/p .

It is well beyond the scope of this project to pursue use or validation of a

turbulence closure model for Reynolds stress tensor or turbulent heat flux vector. For

formulation completeness, however, the essence of the simplest "eddy viscosity"

closure, e.g., the Baldwin-Lomax (1975) model, is summarized by modifications to

(2.4)-(2.6) to the forms
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qj='qj- _uj =-(k(_)+ k t)_x i (2.17)

p= p +PUkU k =p(RT + 2k /3) (2.18)

The new variables thereby introduced are I1 t, the "turbulent viscosity," k t , the

"turbulent thermal conductivity," and one-half the trace k of the kinematic Reynolds

stress tensor uiu j termed "turbulent kinetic energy," Further Eij in (2.16) is the mean

flow deviatoric strain rate tensor, which is the parenthetical expression in (2.4)

expressed in mean (Reynolds-averaged) variables.

The eddy viscosity closure model thus reduces the new unknowns to the scalars

!_t and k t , each of which is a function of the entire mean flow state variable q rather

than (only) the thermodynamic state. Importantly, (2.1) remains the conservation law

form for all descriptions pertinent to configuration aerodynamics problems.

2.4 Non-dimensionalization

The terminal preparation step is selecting a suitable reference state, such that

(2.1)-(2.3), conceptually augmented with (2.15), can be identified for essential character.

Several non-dimensionalization (non-D) forms are familiar, dependent upon what is

selected as the reference primitives. The general form results by selecting a reference

state for each member of the state variable q= {p,m.E} T and the pressure p. Hence,

denoting a non-D variable by an asterisk, and the reference by a subscript "r," define

P" = P/Pr

E"= E/Er

x" =x//..r

m =mlmr=pu/PrU r

I.

P =P/Pr

t ° =t/tr ==t/(L/Ur) (2.19)

Substituting (2.19) into (2.1)-(2.3) and clearing produces the following non-D groups:

Reynolds number: Re = PrUrL/l_ r

Prandtl number: Pr = Cprl_ r /k r

Eckert number: Ec ,= Er / pr U2

Euler number: Eu = Pr IPr U2

Machreference: Mk = Ur IT_rlPr

Stanton number:. St = L / Ur_ r ,=1 (2.20)

9



With definitions (2.19), and non-D groups (2.20), the non-D form for (2.1) remains as

expressed, upon replacement of (2.2) in non-dimensional variable form as

q= i , fj= =mimj/p+EuPSi j f]v Re-laij (2.21)

[(E+(Eu/Ec)p)mj/p (ReEc)_laijm i/p_(Pe)_lq j

The superscript asterisks are suppressed in (2.21), and the non-D functional forms for

c_ij and qj remain as expressed by (2.4)-(2.5). Finally, the non-D polytropic gas

equation of state replacement for (2.3) is

p = _u_ (EcE - mjmj / 2p) (2.22)

-- 4

Several special cases of this non-dimensionalization have been historically used.

For example, if the reference pressure is equated to the dynamic pressure, then Eu=l by

definition. Substituting this into (2.20) then produces Mk=0.84515, Ec=('y+l)/2(7-1)=3

for air, and Pe=RePr(_+l)/2=0.85714 RePr for air. Alternatively, if one defines Eu='y -1,

then Mk=l.0 and Ec and Pe are appropriately modified. Another non-

dimensionalization defines Ec=l, hence for air, Mk=_/2 / y(y- 1) = 1.8898.

Eu = (y-l)/2=O._ Pe=2RcPr/y and (2.3) is identically the non-D form for pressure.

Thus, each of these special cases basically constitutes definition of a (fictitious)

Mach reference, Mk, which thereby alters the scalings throughout (2.21)-(2.22). The

given forms are sufficiently general to allow independent selection of Mk, which is

most logically connected to the aerodynamic freest'ream state.

2.5 Canonical form

The non-dimensional Euler/Reynolds-averaged Navier-Stokes (E/RaNS)

conservation law system is now identified as (2.1) with state variable q={p.m.E},

appropriately interpreted, and with flux vectors (2.20)-(2.21) and pressure (2.22).

Assume existence of a general coordinate transformation xj =xj (_k). whcrevlk is a

(curvilinear) resolution that may be "boundary-fitted" for an aerodynamics description.

Using the chain rule, (2.2) can be expressed as

_t _ det _qk - - s = 0 (2.23)

where ejk are elements in the matrix of co-factors, constructed from the (known)

forward transformation jacobian [Oxj/_ik], and "det" is the determinant of this matrix.

(Hereon, [.] denotes a square, non-singular matrix while {.} remains a column matrix).

10



For time-invariance of the transformation, and invoking the fundamental metric

invariance identity O(ejk)/Orlk = 0, (2.23) can be rearranged to the form

where s*=det s. In the literature, (2.23) has been termed a "weak" conservation form,

while (2.24) is the "strong" form, cf., Pulliam(1986). An interesting observation accrues

to completing the first products in ejkfj. Multiplying the first entry in (2.2) by p/p, the

convective (only) flux vector resolution fq of q becomes

<f_k =-ej k = ejk q - vkq (2.25)

where v k is termed the (streamline) contravariant resolution of the convection velocity

vector m/p. For the 11k coordinate transformation '_ody-fitted," then (2.25) expresses

velocity principal components near surfaces, hence the local tangent-normal resolution.

The transformation also facilitates the meaningful characterization of the

mathematical form (2.23). In the limit Re grows without bound, the dissipative flux

vector fv vanishes, cf., (2=21), as does the source term, yielding the Euler form

LE(q)=-a-[+ det i_lk

Realizing that fj=fj(q), the canonical form of (2.26) is

aq _ 1 a(ejkfj) = 0 (2.27)
Ot det _lk

The jacobian of the kinetic flux vector under the transformation i.e., A k = O(ejkfj) / Oq, is

the order (d+2) matrix

A k =

0 , e 0
lk

m. m. m.

m. m. e m. m;(l+PE )!

P I_ P "*t ,e.i_ p

(2.2S}

Here, the indices 1 < (i,l)<d are free, corresponding to the d-dimensional resolution of

the momentum vector m. Further, the subscript notation pp , Pml and p E signifies the

corresponding partial derivatives of pressure with elements of the state variable q.

The mathematical character of (2.26) depends upon the eigenvalue composition,

c.f., Courant and Hilbert (1929), of the matrix

11



n

k =1 3q (2.29)

for _oak = 1, 1 _<k < n and all oak _ R +. Due to the linear composition of Ak, with

respect to the eik in (2.28), the form Aoa coincides with A k upon the substitution of ejk

with ejoa =oakejk for all j. Therefore, the eigenvalues of Aoa in (2.29) are real (or

complex) if and only if those of A k in (2.28) are correspondingly composed. The

eigenvalues of the kinetic flux vector jacobian are the solution to the characteristic

equation

which is a real coefficient algebraic equation of degree m=d+2

The characteristic equation is thus of the form

(2.30)

with exactly m roots.

_'_-Klk_'_-I +Jc2_.kK_-2 + .... +(-1)mlcmk =0 (2.31)
m

with coefficients _:i expressed in terms of the trace s i of the i th power A k via the
recursion relations

1 1

Ic1 =s 1, tc2 =--_(s 2-_:1sl) , Ic3 =-_(s 3-_:1s2 +lc2s 1) ....

(2.32)

_cm = (-1) m-1 (sm -IClSm_ 1 + _C2Sm_ 2...+Kin_ 1Sl)
m

which reduces the (formidable) operation of determinant formation in (2.30). For d=2,

and with subscript k denoting scalar resolution, (2.32) for (2.30) becomes

I'll °tClk =4ejk +ejkPmj+ejk-_P E

_C2k = 3 ejk + 3ejk ejk (1+ PE ) + ejkPmj

m. m. 2 m. 3

Hence, roots of (2.31) yield the eigenvalues of A k as

12



mj

Kkl, 2 = ejk

_ + ejkPmj + ejk_'k3,4 =eJ k p --'fl'-PE (2.34)

my ) 2
_1/2

+P)_
(2.35)

With extra labor, the d=3 equivalents of (2.37)-(2.34) can be similarly established.

For d=2 (3), the first pair (triple) of eigenvalues kkl,2 (kkl,2,3) correspond to the

convective velocity resolution in contravariant scalar components, recall (2.25). The

remaining two eigenvalues will also be real provided the square root arguments are

positive. A homogeneous fluid, e.g., (2.6)-(2.7), leads to a considerable simplification of

(2.35). Specifically,

ejkPmj ejk P P ejk V (2.36)

hence

(2.37)

k,," =e,m'+ e:e,k - ]]• p - -fp.+p0+ (E+p) (2.38)

where the underscore (on k) denotes not a summation index.

For a rectangular Cartesian coordinate system, the metrics ejk reduce to (1,0),
hence 2.38) becomes

(_ /mj +PE (E + p) (2.39)= mk :f. "-_Pmj+pp_'k3,4 p P

In this simplest geometry, it is well known that

= mk + c (2.40)
"Yk3,4 p

where c is the isentropic sound speed ff$ pip. Hence, (2.39) provides the auxiliary
definition

c- s = Pmj +pp + (E+p) (2.41)

13



and the argument in the square root in (2.39) is indeed positive. By implication then,

(2.38) yields two real characteristics, hence the Euler conservation law system (2.26) is

hyperbolic, as was known at the outset. Thereby, the eigenvalues (2.34) correspond to

convective waves with characteristic contravariant celerities v k 1,2 while eigenvalues

(2.35) correspond to combined convective-pressure waves with characteristic celerities

Vk3,4. Then, the Reynolds-averaged NS conservation law system (2.21), at large but

finite Reynolds number, constitutes a "parabolic perturbation" to the hyperbolic Euler

system.

2.6 Well-posed boundary conditions

The Euler form (2.1) has been thoroughly analyzed for well-posedness regarding

applicable fixed (Dirichiet) boundary conditions, cf., Strickwerda(1977). Configuration

aerodynamics problem statements involve boundaries upon which inflow, outflow and

no throughflow (walls) occur. Further, admissible boundary constraints are

characterized according to whether the flow is (locally) supersonic or subsonic. For d

the problem dimension, the applicable number of fixed (Dirichlet) boundary conditions,

admissible for well-posedness, are given in Table 2.1.

Table 2.1 Euler-admissible Dirichlet Boundary Conditions (BC)

TYPE _ NO. oF Dn_cH_rl- BC

Inflow Supersonic d+2

Subsonic d+l

Outflow Supersonic 0

Subsonic 1

Wall Either None

The hyperbolic conservation law characteristics analysis is not deterministic

regarding which state variable members may be held by a Dirichlet constraint, which

thus generates an analysis requirement. This is completed in Section 4.
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3. APPROXIMATION, ERROR CONSTRAINT

3.1 Overview

The Euler, Navier-Stokes and Reynolds-averaged Navier-Stokes conservation

law systems, with closure model essence for the configuration aerodynamics problem

class, are developed including non-dimensionalization. The premise here is that the

associated state variable q(x,t), which fully describes the flow state, is not attainable in

closed form. Thereby, the development of a theory to support the establishment of an

approximation qN(x,t) to q(x,t)is required.

The mathematical approach is to establish a suitable measure of the error

associated with any approximation, and then define a process that renders this error an

extremum. The resultant theory and procedural process employs the weak statement,

which requires that the algorithm designer identify suitable function spaces upon

which to draw to support the developed ingredients. A key attribute of this process is

that it proceeds in the continuum, hence uses vector field theory and calculus for all

processes. Upon theory completion, one then retraces the steps using a specific

selection for trial space and test function sets, which herein coincides with the decision to

employ a spatial semi-discretization to render the defined integrals easily evaluated.

This chapter develops the weak statement for solving the aerodynamics conservation

law system (2.1), (2.21)-(2.22)

3.2 Approximation, measure of error

Mathematically, any (CFD) algorithm seeks to generate an approximation

qN(x,t), to the analytical state variable q(x,t), via a denumerable set of decisions leading

to an algebraic equation amenable "to computing." The mathematician's weak statement

has now emerged, c.f., Oden and Reddy(1976), under significant "coaxing" by academic

engineers, c.f., Baker(1991, 1983), to largely encompass all predecessor CFD theoretical

procedures.

Weak statement theory suggests the starting point as selection of a space of

functions that are suitable to "support" an approximation. Denoting members of this

set as _Fj(x), any approximation to the state variable q(x,t) satisfying (2.1) is
N

q(x,t) - qN(x,,)= j___1LFj(x)Qj(') (3.1)

Here, superscript N denotes "approximation," and (3.1) indicates the construction as

products of known functions _j(x), collectively called the "trial space," and a set of

unknown expansion coefficients Qj(t). Since (2.1) is initial-value, space and time are
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indeed separable coordinates, hence Qj(t) can totally support all time dependence in

any approximation. Since the trial space members _j(x) are assumed known, all

members therein must be specified. The available choices are essentially limitless, e.g.,

trigonomic polynomials, Fourier series, Legendre polynomials, Chebyshev

polynomials, Lagrange or Hermite interpolation polynomials, etc. Note that the quality

of qN(x,t) depends in the most fundamental way on this choice.

Indeed, (3.1) is the statement of any approximate solution, but it contains no

information on how good a specific qN may be. Since qN is an approximation, it

cannot satisfy (2.1) identically. Specifically, L(q N ) does not equate to zero, and the

amount by which it is not zero is a measure of (the distribution of) the approximation
error e N

eN =eN (x,t )=q-q N (3.2)

Thus, the optimal criterion for design of a CFD algorithm must be to absolutely

minimize this error. Since eN is itself not known, then the available measure extremum

occurs when the integral

f w(x,t)L(qN)dt I= 0, for all w(x,t) (3.3)

vanishes for any "test function" w(x,t), for which the choice is limitless.

Selecting a specific trial space set _j(x), and for any test function w(x,t),

completing the integrals in (3.3) always produces an ordinary differential equation

(ODE) system. Hence, (3.1)-(3.3) constitutes an integral transformation of a system of

PDEs, with solution approximation qN(x,t), into a (much) larger system of ODEs

written on Qj(t), the evolution of the solution expansion coefficient set.

Any discrete time integration method is potentially applicable to this generated

ODE system, e.g., Adams-Bashforth-Moulton, Runge-Kutta, Euler, trapezoidal rule,

leapfrog, etc. Substituting (3.3) into the corresponding Taylor series always yields an

algebraic statement, which is the terminal "computable form" of any CFD algorithm.

This algebraic system is strongly nonlinear, hence the CFD algorithm designer faces

selection of an iterative strategy to actually create the fully discrete solution for

Qj at time t = nat. Again, a wide variety of linear algebra choices exist.

3.3 Error extremization, the weak statement

Viewing (3.1)-(3.3), a specific algorithm is constituted at least by the choices for

trial space _j (x), 1 < j < N, the test function w(x,t), the ODE integration algorithm, and

a matrix iteration procedure. The concepts of trial space and extremization of error are
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elegant, but require detailed development to emerge into a practical numerical recipe.

First, that (3.3) must hold for any test function must become deterministic. Certainly,

any given function can be accurately represented by an interpolation. Selecting another

set of functions _i(x) for this interpolation, every test function may be approximated as
M

w(x, t) - w M (x, t) ,_ ___ 4) i(x)Wi(t ) (3.4)

i=!

In (3.4), superscript "M" denotes interpolation, and any time-dependence is again cast

onto the known expansion coefficient set Wi(t).

Once the function set q)i(x) is chosen for (3.4), a specific test function

interpolation wM(x,t) is distinguishable from any other only by the corresponding

coefficient set Wi(t). Thereby, that (3.3) must hold for any test function can now be

precisely enforced by requiring this integral be stationary with respect to the (any) set of

Wi(t). This extremum, termed a "weak statement," is

Neglecting some (theoretical) boundary condition details, M in (3.5) is equal to N in

(3.1), such that (3.5) produces an ODE system of rank precisely equal to the N

unknowns Qj (t). Equation (3.5) cleanly resolves the issue of "for all w(x)" in (3.3), at the

expense of introducing another function set @i(x) for a decision.

The optimal choice for the set _i(x) is that it be identical, member by member, to

the trial space _Pj (x). This choice yields the Galerla'n weak statement

GWS. h _ (x)L(qN )dZ=O for l < i < N (3.6)

Thus, the approximation error in any qN(x,t) is required to be orthogonal to every

member of the space of functions supporting qN, for any choice of trial space. There is

no linearity assumption for this concept to be valid, although the rigorous mathematical

proof of optimality can be established only via a linearized analysis. However, quality

numerical experiments have verified optimality for model problems, and select laminar

and turbulent Navier-Stokes statements, c.f., Baker (1983, Ch. 4-6).

3.4 Spatial semi-discretization, finite volume, finite element

Historically, the traditional choice for a CFD numerical algorithm construction

has been finite difference methodology, or more recently, with boundary-fiRed
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transformations, a finite volume (FV) construction. A FV CFD algorithm, for any

approximation (3.1), starts with the form

FVWS N - _InL(qN )dz (3.7)

which obviously cannot equate to zero, as does (3.6), since L(q N) _ O. To produce a

computable form, hence resolve this issue, the FVWS N must be cast onto a spatial semi-

discretization f2 h of f2. Notationally, FVWS N --_FVWS h, and substituting (2.2) for

clarity, (3.7) becomes the theoretical statement

/ht
(3.8)

The replacement of the integral over f2 in (3.7), by the sum of integrals over each sub-

domain in f2 h , and all individual closed boundaries in 012 h, allows (3.8) to be equated

to zero as indicated.

Evaluating the first integral in (3.8), on the generic FV domain in f2 h, usually

involves averaged (cell-centered) data. Conversely, every closed-surface integral

requires data evaluations all around the boundary 012 h of each volume in f2 h.

Comparing (3.8) to the general statement (3.3), hence also (3.5), the choice w(x,t) ,_

constant has obviously been made. In (3.5), the interpolation polynomial set _i is thus

reduced to the single constant (unity), hence a FV algorithm is a weak statement (3.5)

wherein the approximation error is made orthogonal to the set of all constants. It

constitutes a Galerkin weak statement only when the trial space "rjtx}--_ "rj_x) is
also the set of (piece-wise) constants.

The alternative to the FV construction is to utilize a test function set _i(x) which

is indeed differentiable. The Galerkin construction employs _i(x) identical to _i(x),

which are not constants, hence
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(3.9)

using a Green-Gauss form of the divergence theorem. No discretization was required

to manipulate (3.9), hence no restrictions underlie the choice for _Fi(x) except

differentiability. In further distinction to (3.8), the last term in (3.9) requires evaluation

only on the problem domain boundary, Ofi, hence provides the slot to analytically

impose flux vector (embedded) boundary conditions.

The continuum GWS N (3.9) is a function of the approximate solution trial space

_Fi(x), containing N members, and boundary conditions (to be identified). The integrals

in (3.9) are very difficult to evaluate when the trial space set spans the entirety of fi, i.e.,

is "global." The basic idea behind a finite element (FE) approximation to (3.9) is to re-

express each _i(x) as a set of kth-degree (interpolation) polynomials having compact

support. Hence, definition of a spatial semi-discretization of fi h, is formed as the union

(denoted "u" and meaning non-overlapping sum) of FE domains D e. The geometrical

shape of an De often looks identical to a FV subdomain, e.g., triangles and

quadrilaterals in 2D and tetrahedron and hexahedron in 3D, and the domain sides (or

faces, in 3D) are straight (planar) or curved (only for FE). Figure 3.1a) illustrates a

discretization of ft h constituted of hexahedra, and decomposition of one hexahedron

into five tetrahedra, Fig. 3.1b).

The FE interpolation polynomials spanning De have knots (evaluation points)

coinciding with geometrical distinctions, e.g., vertices, mid-edges, etc. State variable

approximation expansion coefficients Qi(t) are assigned to these locations, which are

then called "nodes" On any FE (or FV) region, these domain data may be clearly

denoted as a column matrix {Q(t)} e. For the FE choice, the array of k th degree

interpolation polynomials on De is usually denoted {Nk(TIj)}, where _j is the coordinate

system intrinsic to De. Figure 3.2 illustrates curvilinear quadrilateral and hexahedral

finite element domains De with vertex and mid-edge nodes denoted as (-) and (x)

respectively.

When one makes the FVWS h choice, (3.8) is usually expressed in subscript node-

index notation rather than matrix notation. Conversely, an FE semi-discretization D h
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Figure 3.1 Domain partitioning into a discretization, a) hexahedra on 9_3

b) composite hexahedra with eight nodes and its subdivision into five tetrahedra.

Global reference frame

_X

l 6

I 2

5

D-r/1

Local reference frame

6 s_'_l _ ''"

x_ Global reference frame Local reference frame

Figure 3.2 Tensor product finite element domains and node coordinate

dispositions, a) two-dimensional, b) three-dimensional
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permits the approximation definition (3.1) to be analytically re-expressed in continuum
form as

q(x, t) Z qN ( x, t) - qh (x, t) = Uqe (x, t) (3.10)

Hence, an FE apDroximation qN is formed as qh, under the finite element spatial semi-

discretization gin of gi, as the union of element approximations qe on C2e where

£2h z Ueg2 e. On any (hence every) finite element domain C2e

qe(x,t ) IN k T"
wherein each element in the row matrix {Nk}T is a kth degree polynomial, and there are

as many of these polynomials as there are state variable degrees of freedom on D.e. FE

trial space basis sets {Nk} are available for any problem dimension d, e.g., the linear

bases spanning the D.e in Fig. 3.2 are

l

'(1 - VII)(1 - v12)

(1+111)(1-112)

(1 + vii )(I + 112)

(1 - VII)(! + _2 )

l

. [Nl(ni)/= _

2D

'(1 - VII)(1 - vi2 )(1 - vi3

(1 + 111)(1 - _2 )(1 - VI3

(1 + VII)(1 + TI2)(I - 113

(1 - VII)(1 + 112)(1 - VI3

(1 - 1'11)(1 - vi2 )(1 + vi3

(1 + vii )(1 - vi2 )(1 + 113

(1 +vii )(! + vi2)(I + vi3

(l - vii )(1 + V12)(! + Vl3

(3.12)

3D

3.5 Fully discrete form, algebraic statement

For any choice _i (x), and under a spatial semi-discretization, WS N _ WS h is a

matrix ODE system, since OqN/i)t always yields d{Q}/dt, where {Q} is the nodal array

containing the approximation expansion coefficients Qj(t). Combining all other terms

in (3.8) or (3.9) into a column array {RQ}, called "the residual," the weak statement

integral always yields the matrix ODE system

"M" d{Q] +
wsh = l J"_"t {RQI = 101 (3.13)

In (3.13), [M] and {R) denote global rank square and column matrices, respectively.

and {Q}e {Q(t)} is the column matrix containing the unknown state variable
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approximation coefficients at the nodes of f2 h. The [M] matrix produced by

Fvwsh(3.8) is usually diagonal, while that produced from (3.9) via GWS h is always

non-diagonal. The residual {RQ} in (3.13) is a non-linear function of {Q}, recall (2.21),

since it contains contributions from all terms in the kinetic and dissipative flux vector
approximations.

An ODE algorithm utilizes (3.13) to evaluate time derivatives created in the

associated time Taylor series. For example, the 0-implicit, one-step Euler ODE

algorithm over the time interval tn+ 1 = tn + _ is

0 /n+l )"_t [n (3.14)

Substituting WS h (3.13) for both time derivatives in (3.14), and clearing the [M]-I,

produces the "computable," fully discrete algebraic equation system

{FQ} =[M]{Qn+I -Qn}+ At(O{RQ}n+ 1+(I_O){RQ} n )= 10} (3.15)

The homogeneous form (3.15) is advantageous, since the residual {RQ} is

strongly-nonlinear. The first right-side term in (3.15) is the change in {Q(t)}, over the

time interval z_t,= tn+ ] -tn, which at convergence exactly matches the corresponding

change in the residual {RQ(t)} over At, hence {FQ} vanishes. Attainment of this

convergence requires a matrix iteration procedure, and available candidates abound cf.,

Varga(1967). Underlying all such methods is the Newton iteration algorithm

[JA C]{SQ} p+ ] = -{ FQ}P

where UAC] is the jacobian of (3.15) and p is the iteration index.
(3.16) are

[]AC] - =[M]+0at

(3.16)

The definitions for

{01'P+I = {Q}P+I +{SQ}p+l = lQln + _{SQ}i+I_'n+l (3.17)
i=O

{FQ}P = [M]{QPn+ 1 -Qn }+ d_tI0'RQ}nP+l +(I-O){RQ} n I

In (3.17a), _AC] is a very large (square) non-singular matrix. As p cycles 0,1,2 ..... the

right-side of (3.16), i.e., (3.17c), (hopefully) becomes progressively smaller until, at

some p, max I{6Q}P +! I_<r for some e>O. Hence, the iteration (3.16)converges (to e),

and (3.17b) yields the fully discrete state variable nodal distribution at time tn+ 1.
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3.6 Summary

The CFD theory presented as the weak statement (3.5) always produces the ODE

system (3.13), independent of FV/FE spatial semi-discretization specifics. This ODE

statement is then employed in a time semi-discretization algorithm, hence always

produces the strictly algebraic statement (3.15), which is non-linear unless (3.14) is

selected as an explicit time integration algorithm, i.e., 0 = 0. This selection linearizes the

jacobian (3.17), however UAC] remains a full square matrix via [M] if an FE GWS h

semi-discretization is selected. Conversely, the FV decision yields [M] diagonal, by

choice, whereupon also selecting 0 = 0 renders the algebraic solution process (3.16)

trivial. (Many explicit FE procedures for aerodynamics CFD have also artificially

manipulated [M] to a W-like diagonal form, for explicit time integration efficiency.)

For 0 _ O, and either FE or FV semi-discretizations, the iteration algorithm (3.16)

is fully nonlinear, and UAC] defined in (3.17) is very large! Hence, the full Newton

method is rarely of use in practice, especially for 3-D solutions. The resolution is to

replace (3.16)-(3.17) with a quasi-Newton method, which amounts essentially to

replacement of (3.17a) with a smaller matrix, hence a less compute-intensive process.

Methods available include stationary iterations (Picard, Gauss-Siedel, SOR), sparse

matrix methods (GMRES, PCG), and block (2k+l)-diagonal matrix methods (AF, ADI,

TP). The selected tensor product (TP) procedure for this project is detailed in a latter
section.
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4. WELL-POSEDNESS, STABILITY, CONVERGENCE

4.1 Overview

For Reynolds-averaged Navier-Stokes and Euler (RaNS/E) conservation law

systems, the weak statement algorithm for construction of a computable approximation is

developed. The key decisions underlying algorithm design include:

• trial space selection, hence trial space basis

• test space basis (FV or FE)

• time semi-discretization algorithm

• linear algebra iteration procedure

Once these decisions are made, the CFD algorithm/code completion process reduces

to (an incredible number of) details. Prior to commission of this effort, several

additional theoretical issues need resolution. For one, the RaNS/E systems are mixed

initial-boundary value PDEs, for which specific well-posed boundary conditions must

be determined. A Lyapunov stability analysis, IanneUi(1991), is particularly

appropriate for the continuum weak statement (WS N) construction.

Stability of a WS N algorithm, hence its spatial semi-discretization WS h, requires

analysis for shock capturing. The 'Taylor weak statement" extension to (3.5), Baker and

Kim(1987), provides a continuum construction, applicable thereafter to any spatial

semi-discretization. The available (linear) theory for accuracy and convergence under

mesh refinement is highlighted, showing the utility and limitations of using more

complete (than linear) trial space basis function sets. Thereafter, a Fourier stability

analysis quantifies assessments for dissipative and dispersive error mechanisms.

This theoretical guidance supporting the cogent decision process, for construction of

a specific CFD algorithm, is presented herein.

4.2. Well-posedness, boundary conditions

As commented in Section 2, the Euler form of (2.1) is thoroughly characterized for

well-posed Dirichlet boundary conditions. However, this characteristics analysis is not

deterministic regarding specific admissible Dirichlet constraints, which in combination

with the RaNS extensions generates the analysis requirement.

Iannelli documents the well-posedness analysis for the WS N CFD algorithm theory.

The fundamental theorem (Iannelli, 1991, p. 55) proves that, a) given the Lyapunov

functional V(t,q) defined on 9_+x9_ d with t egl + and qeg_d,and, b) for V(t,q)

bounded below by the norm of a continuously increasing function, and c) for

-_t l PDE- f (t'q)-g(t'q) (4.1)
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where subscript "PDE" denotes the time derivative along a solution to L(q), and, d) for/

continuous and bounded above, and e), for g a positive continuous increasing function,

then the solution q to L(q) is bounded.

An example illustrates the utility of this theorem. The d=l linear model of (2.1),

with domain 9_+x fl c R 1, for x _ [a,b] and t _ [to, _), is

3
_+'_x (uq) = 0 (4.2a)

For u a positive constant, the well-posed boundary condition is q(x=a,t) = qa(t), and no

condition is admissible at x=b. A candidate Lyapunov functional for the analysis is

V(t'q)'lfbq 2dx (4.2b)

Its time derivative, modulo (4.2a) is

(4.2c)

For any initial condition q(x,t=to)=qo(X), identifying q_ :=_f and q_ =_ g in (4.1) meet the

theorem requirements, hence q is bounded in R 1.

A Lyapunov functional for the RaNS/E analysis for (2.1) is developed from the

"entropy functional" of Dutt(1988), defined as

+ 2_p2 -Y ppj

The variables with superscript overbar in (4.3)denote a reference stateselection such

that V is a strictly positive and convex function of its argument. The Lyapunov

functional then selected by lannelli is

S(q, t) E JV(q(x, t))d'¢ (4.4)

The theoretical requirement is to bound dS/dt modulo (2.1). The required

differentiation, recognizing that f=f(q) and using (2.1), is

o/Y/

Hence,

3xj (4.5b)

For (4.5b) and (2.2), Iannelli(1991) verifies that, for the definition
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m o

Fj-_-[V(q,t)-(7-1)'_] (4.6)

the first right-side term in (4.5b) is the divergence of a vector field F with resolution Fj

as expressed in (4.6). Hence, using a Green-Gauss divergence theorem

0V ,

¥ "
where _y is the unit normal vector on Og2. The domain integral (on f2) in (4.7) can be

proven positive, hence using (2.2)

d__SS< __ __[V_(7_l)__]hjdadt- f2

p P " " doff

where aq and qy are the stress tensor and heat/flux vector contributions, respectively,

in the dissipative flux vector f_, recall (2.2) or (2.21).

Comparing (4.8) to (4.1), IanneUi(1991) identified g with the first right side term,

while f is composed of the remaining two terms, which are both positive upon

replacement of qj with -kOT/3xy. The closed contour integrals in (4.8) constitute

evaluations on boundary segments with inflow, outflow or no through flow,

selectively, as appropriate. Since surface integrals are similarly generated in the

GW$ N, recall (3.9), then the proof of boundedness via (4.8) carries over directly to the

weak statement formulation, hence a specific boundary condition implementation.

Iannelli(1991) details the specific mix of Dirichlet boundary conditions for which (2.1),

hence the weak statement algorithm (3.5), is well-posed for the Navier-Stokes

definitions. Further, as Re--_, they reduce to admissible Dirichlet constraints for the

Euler form, in agreement with Table 2.1.

On inflow boundary segments, whereon m.fi <0, the surface integrals in (4.8) are

bounded from above and (2.1) is well-posed for the constraints

inflow (supersonic): all elements in q fixed.

inflow (subsonic): all elements in q fixed except the normal momentum

component, m. fl, which must be free, and

a i.j n.j = aiy u k skj - bi

qd _.j = c(T) (4.9)

where uk - mk/p is local velocity and fkj is the resolution of the unit tangent vector

lying in the surface with unit normal ft. Hence, index "k" is correspondingly restricted
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to 1 _<k _<d- 1, as is the rank of the data matrices aij and b i. The normal heat flux may

be set to a constant c, or may depend on temperature, and the typical aerodynamics

situation is that all these data vanish identically.

At an outflow boundary segment, where m-fi> 0, the surface integrals in (4.8) are

bounded and (2.1) is well-posed for the constraints

outflow (supersonic): all elements in q are free, plus

aijh j =0

qjnj =0

outflow (subsonic): all elements in q are free, plus

(4.10)

(PSij - aij )by = Pout (4.11)

qj _j = c(T)

Observe that as Re---_**, hence RaNS reduces to Euler equations, that (4.10)-(4.11) are

consistent with the constraints in Table 2.1.

At aerodynamic surfaces, the Euler formulation requirement is flow tangency, hence

m.fi=0 This is augmented with no-slip (re.i=0) in the Navier-Stokes formulation.

Therefore, on no-through flow boundary segments, the surface integrals in (4.8) are

bounded, hence (2.1) is well-posed, for the conditions:

wall (inviscid}. (fi-V)q=0for all elements inq, plus
(4.12)

m.t_ =0

wall (viscous): (n. V)q = 0 for elements p and E, and

mj=O forl <j<d

qjhj = c(T)

(4.13)

In summary, (4.9)-(4.13) are admissible Dirichlet data specifications on bounding

surface distributions of momentum flux, deviatoric traction and heat flux vector, for the

RaNS/E conservation law system (2.1). These data specifications collectively prevent

the growth of all integrals in (4.8), except the first right-side term involving convective

fluxes, i.e.,

_; mj [ v-( y- 1) "p]_j dc_ (4.14)

which is allowed to vary according to the constraints presented in Table 2.1.

Consequently, the hypothesis of the Lyapunov stability theorem is satisfied, hence the

solution q is bounded. Importantly, the Galerkin weak statement GwsN theory (3.9)
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explicitly exposes, in the continuum, these surface integrals for the resultant CFD

algorithm construction.

4.3 Stability, artificial dissipation

Solutions q(x,t) to the RaNS/E form of (2.1) exist that can exhibit singular character,

e.g., shocks, contact discontinuities and rarefaction waves. Further, CFD simulations of

RaNS/E aerodynamics statements generate only a discretized approximation qh to q,

and dispersive error mechanisms exist to destabilize the solution as well as the linear

algebra process. Therefore, an augmentation to the CFD theoretical process is required

to identify artificial dissipative processes, typically termed "numerical diffusion," to

stabilize a qh-generation procedure.

Meeting this requirement with precision has occupied the aerodynamics CFD

theoretical community for decades, leading to creation of a multitude of "dissipative

CFD algorithms" ranging from explicit artificial viscosity, cf, Pulliam (1986),

Jameson(1982), to flux-difference, flux-vector and flux eigen-vector splittings with

upwind differencing, cf., Steger and Warming(1981), Liou and vanLeer (1988),

Roe(1981), Lombard, et al (1982), etc. A cogent review of these methods with

distinguishing characterization is published by Vinokur(1990).

The requirement exists therefore to generalize the weak statement theory for

artificial dissipation. In distinction to the historical procedures, which all require a

spatial semi-discretization to support theoretical musings, a development in the

continuum would be universally applicable for arbitrary trial space basis choice. The

progenitor of the "Taylor weak statement (TWS)" theory is of Lax-Wendorff origin, as first

developed for FE methods by Donea (1984) for convective problems. The

generalization for the RaNS/E model problem class, as developed by Baker and Kim

(1987), yielded a theory encompassing sixteen independently derived dissipative CFD

algorithms as special cases. For the RaNS/E problem statement, Iannelli (1991) and

Freels (1992), independently developed and verified specific TWS dissipation

mechanisms.

The TWS formulation recognizes that dissipation in the absence of physical diffusion

is the requirement. Hence, fv and s in (2.1) vanish for the theoretical development, but

return at completion. Recalling that f=f(q), the analysis departure point is the Euler

form of (2.1), i.e.,

= _t _xj _}t _q _xj _t "I_xj 0 (4.15)

For development simplicity,the coordinate transformation (2.23)is suppressed, hence

Aj defined in (4.15)isthe cartesianEuler flux vector jacobian comparable to (2.28),with
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its eigenvalue composition.

yields

Following Lax-Wendroff, a temporal semi-discretization

At 2 Ca3qln At 3
-- + -- + O( At 4 ) (4.16)

2 t_t3J 6

on the interval ax x tn+ l -t n.

time tn)

Oq = _ _fi

Then, (4.15) enables derivative interchanges yielding (at

(4.17)

(4.18)

(4.19)

The terminal forms in (4.18) and (4.19) indicate the arbitrariness for convex

combinations -ix + _1= 1 and - _ + IX= 1.

Collecting terms by like coefficient, substituting (4.17)-(4.19) into (4.16), and taking

the limit At --+ I: > 0 yields reexpression of (2.1) as

3 (coAt+ At2A O _]3q s

(4.20)

where superscript m denotes "raylor-series modified." The dominant dissipation term

in (4.20) has the I_ premultiplier, hence the simplest dissipative form for (4.20) is

Lm(q)=L(q) At2 i}xj_ (_AjAk _}q l=Ooxk) (4.21)

Equation (4.21) clearly indicates that via the temporal semi-discrete process, a

second-order (parabolic) perturbation becomes appended to the RaNS/E system, that

involves an outer (tensor) product of flux vector jacobian matrices with the gradient of

the state variable. For any finite At, this term is scaled in magnitude by the coefficient

3O



_. Since this augmentation is in the continuum, then the entire content of Chapter 3

regarding weak statement algorithm development is unmodified, except for

replacement of L(q N) in (3.5) with Lm(qN), (4.20) or (4.21). Thereby, the ODE system

(3.13) remains the end point of any weak statement spatial semi-discrefization, while

(3.15)-(3.18) remain the matrix algebraic terminal statement for any time discretization

(3.14). Thereby, the theoretical crutch of (4.16) being explicit, and completed for LE(q),

does not yield a practical constraint.

The "_term" in (4.21) represents a significant complication since the matrix

product AjA k couples all PDEs in the modified RaNS/E system. Therefore, additional

simplifying assumptions may be appropriate for computational tractability. With the

generalized coordinate transformation in (4.21), the tensor product produces an order

(d+2) matrix containing products of all terms in (2.28),c.f., Iannelli(1991).

Aj A k ~ uju k =eft eke viv t (4.22)

where v k - m k / p (and vt) is the contravariant velocity resolution, recall (2.25).

Substitution of (4.22) into (4.21 yields a "tensor diffusivity" form that has been

reported in the atmospheric sciences literature, c.f., Gresho(1989). The explicit

appearance of At in (4.21) can be removed (approximately) via definition of scalar

Courant number C_ _ uTat //17, where subscript 7 is not for summation. Then lumping

_IC3,/2 into a new (distributed) coefficient _(x), another form for (4.21)-(4.22) is

where h is a length scale (eventually a mesh measure) and Uk is the velocity unit vector.

In (4.23), the tensor diffusivity uj_ k may contain negative products dependent on the

scalar resolution (coordinate system). Strict positivity can be assured by contracting

over j and k and taking magnitudes, yielding the replacement

v ,_ jk (4.24)

where u is the velocity magnitude. Replacement of the contracted tensor product in

(4.23) by v can rigidly enforce positivity if required for (4.21) to be stable. Thereby, the

parabolic perturbation (_) term in (4.23) is guaranteed uniformly dissipative, and in

either case the scale level is controlled by 6>0. The Fourier stability analysis

quantifying this construction is detailed later in this section.
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4.4. Accuracy, asymptotic convergence

The augmentation of (2.1)-(2.22) to the form (4.23) defines the RaNS/E system for

which the weak statement approximate solution construction is to be completed. To

proceed further requires a firm decision to on FV vs FE semi-discrete implementation,

of (3.5), and the latter is selected. Thereby, the fundamental choice resides in trial space

basis, both with respect to element domain shape (triangle vs quadrilateral, tetrahedron

vs hexahedron) and the degree k of the embedded polynomials. As discussed, the

selection is quad and hex, spanned by the FE tensor product basis {Nk(Ti) ).

Guidance for choosing other than the simplest form (k=l, recall (3.12), is provided by

available asymptotic convergence estimates. For the linearized parabolic model

problem, c.f., Oden and Reddy(1976, Ch.9), upon resolution of error into spatial and

time (truncation) error contributions, and using the triangle inequality, the semi-

discrete contribution to (3.2), i.e.,

eh (x, t) t q(x, t) - qh (x, t) (4.25)

is bounded under FE mesh refinement, at any time tn, in the form

where C 1 and C 2 are constants (for sufficiently refined mesh). The key issue expressed

in (4.26) is that the spatial semi-discretization error contribution is bounded by the

extremum measure of the mesh he raised to twice the power k, the completeness degree

of (Nk}. Specifically, under (uniform) mesh refinement, and as measured in the H 1

Sobolev norm squared, (4.26) predicts that the linear basis algorithm is analogously

"second-order accurate," and it becomes asymptotic "higher-order accurate" for k>l.

The norms involved in estimating asympotic convergence, e.g., (4.26), are H r Sobolev

norms with basic definition

Equation (4.27)statesthat the Kmction u(x) is sufficientlywell-behaved (smooth),such

that allproducts of derivativeson the range 0 < (#,j)<r are square-integrable, i.e.,they

exist. Hence, the semi-discrete error e_ estimate (4.26)liesin H I on _, i.e.,allproducts

of firstderivatives are "smooth enough" to be integrated. Various norms of the exact

solution exist in the right side of (4.26)to modulate the actual "size" of the error.

Specifically,the firstright-sidenorm statesthat the analyticalsolution q(x,t-tn) must

possess k+l derivatives,which for basis selectionk'>1requires greater smoothness than
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does the RaNS/Euler PDE system itself! Secondly, the initial condition q(x, to) must

have square-integrable first derivatives.

The predictive appropriateness for (4.26) for parabolic forms of laminar and

turbulent RaNS systems is verified, Baker(1983, Ch. 6). However, in aerodynamics, the

subject RaNS/E systems can possess non-smooth solutions, hence CFD approximate

methods will use artificial dissipation mechanisms for stability. Thereby, in this

situation, physical dissipation via fv plays essentially no stability role, hence Re is not a

factor.

The companion linearized theoretical analysis for smooth solutions to the Euler

model problem predicts the asymptotic error estimate form as

-
2

+C3h2 ftn {4.28)
.tto _q(t)UHk+l(f2)dt

Thereby, via the C3-term , in (4.28), the asymptotic convergence rate for smooth

solutions for Euler, or RaNS in the limit Re-.-)oq, is independent of the FE basis degree k.

Select model problem numerical convergence studies indeed verify (4.28),

Baker(1983, Ch.4). Hence, use of k>l basis appears an option that may be of limited

utility in inviscid aerodynamics. Therefore, viewing (4.26) and (4.28), the project

decision was made to restrict TWS h implementation to the linear tensor product FE

basis on quads and hexahedra only.

4.5 Stability, artificial dissipation

The requirement is to quantize stability, for the TWS h modified conservation law

form (4.20). The restriction to d=] (and k=l) directly facilitates a discrete Fourier

stability analysis for the model problem.

/)q+ 0 r _q_
L(q)= -_ -_x _Uq-_.-_x j= O (4.29)

where u is speed and E is identified with Re -1, recall (2.21).

The Fourier representation of the analytical solution q(x,t) to (4.29) is

q(x, t) = __j Bkei(_kx-°Lk t) (4.30)

k

In (4.30), (ak is the wave number of the kth mode, with wavelength Xk =2rc/(o k . Bk is

the expansion coefficient set, and i = _ is the imaginary unit. Since (4.29) is linear,

substituting (4.30) for the case _ = 0 yields oLk =-uoo k . Since k is thereby a free index

in (4.30), all Fourier modes for q(x,t) are of the form
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q(ca,x,t )- qco(X,t)= e i°_(x-ut ) (4.31 )

The analysis assumption is that qh determined via a TWS h algorithm possesses the

similar Fourier representation. Hence, x becomes discretely represented as j _Lr, and

the generic form is

qh (j_Lx, t) ,= eica( fi kx-vt ) (4.32)

where v = v R + iv I is the (complex) modal speed of the Fourier mode, and both vR and

vI are real functions. Multiplying (4.32) through by e -i°aut yields

qh (j_Lx, t)= eCOt(vI+i(u-vR))q co(J_c't) (4.33)

h and differ by the indicated complex function.hence qca qca

Since by definition q(x,t)=qh(x,t)+eh(x,t), then using (4.33), the TWS h semi-

discrete approximation error Fourier representation is

eh =qca _qh =(l_e_at(vI+i(u-vR)))qo_ (4.34)

which provides insight into the consequence of a spatial semi-discretization.

Specifically, if the phase speed v is identical to u, then VR=U and vi=O , hence

• h = 0 for all ca and t. However, for a practical qh, typically vR < u especially at largeca

wave number (short wave-length), while vI can be made nominally zero, prior to

specific addition of artificial diffusion, whereupon v I < O.

The Fourier analysis platform is complimental by combining the TWS h statement

(4.33) with a time Taylor series, recall (4.14). Over the n-step elapsed time interval

n_ = In -t, with a capital letter denoting fully discrete

Q7 "Q(j_c,t + nat) - eica( J_-v( t +nAt ) )

= eiCav(nAt) eiCO(j_-vt)

nh .
•_g qca(l_,t)

(4.35)

Thus, the complex "amplification factor," g=gR+igl, completes the semi-discrete

transition to the fully discrete approximation Fourier representation.

The Fourier analysis process thereby seeks solutions for (the complex functions)

phase speed v, and amplification factor g, dependent upon the choices exercised by the

CFD algorithm designer for (4.29), and or any extensions/modifications thereto. For

the Euler/Navier-Stokes model (4.29), the jacobian of the kinetic flux vector f=uq is u,

hence for (4.20) and (4.29)
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At O O 2 0

At2 0 0 a 2 o aq
(4.36)

Substituting (4.36) into TWS N (3.9) then yields

TWS N = f_i(x)LmIqN )dx

3q N OqN

2 &d_ L _t _j

At 2 dw a 3q N 2 a 3q N

aq N . At At 2 ] xR+vii uqN-¢-'_-x "_'-_(')+-"_-(')] =0

.sxL

The goal is to determine the Fourier characterization of (4.37). Hence, the last term,

representing the surface integrals created via the Green-Gauss theorem, is discarded

(since interest lies in stability at a representative interior node). Further, the "gamma"

term in the fourth integral is discarded, since the FE basis equivalents of LPi in H 1 are

usually not twice differentiable. Then, limiting illustration to the linear (k=l) basis, the

FE spatial semi-discretization form is

q(x,t) - qN (x,t) = Uqe(x, t)
e

1{1-n,l+n}lQIeqe(x,t) .= {N1} T{Q(t)}e= _ (4.38)

The resulting semi-discrete form of TWS N, i.e., TWS h, is
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,N, <,e,dXI
-  .at)Je +dt laQ(,,at,.,E)ie/

d{Q}+
= [M]--_.--{RQ} = {0} (4.39)

which locates the TWS h parameter set (0_,J],_') within the generic expression (3.13).

The basic building of the Fourier stability analysis blocks are the "element matrices"

created for every term in (4.39). Proceeding in the order of (4.37), and substituting

(4.38) as needed, the first term in (4.39) is

(4.40)

where superscript prime denotes ordinary derivative and h e is element length. Next,

Ue[V]e {Q} "I d{N1 }Ueqedx= U--_-eI-l'-ll{Q}e (4.41)
e lle ax 2 L 1, lJ

where U e is the average velocity in element Ele. Similarly

is the diffusion contribution with ¢ > 0. Hence, (4.40)-(4.42) identify the basic algorithm

element matrix library.

The terms remaining in (4.37) involve other multipliers on the mass matrix [M]e ' the

velocity matrix [VIe , and the diffusion matrix [D]e. Dividing through by the element

measure he, and for element Courant number Ce ., Ue_t/he, (4.40) written on the

generic FE domain D e becomes

-IC2 _ ,

The final step is to use (4.43) as the time-derivative expression in the temporal Taylor

series (3.14). The resultant algebraic equivalent of (3.15) on the generic FE domain _e

is, upon substituting (4.43)
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, 0,e 0n,e

which is the generic element-rank contribution to (3.15), the TWS h global order matrix

statement. Note that the "At" multiplier in (3.15) is embedded in the element Courant

number (Ce) residual multiplier in (4.44).

The final step to Fourier characterization is completing the linear algebra statement

(3.17) for (4.44) representing (3.15). Since the analysis is linearized, only one iteration

"'-{SQ_P+I=_{AQ}=tQn+I-Qn } for p=O. The jacobian is easy tooccurs in (3.16), hence

form from its definition (3.17a), using (4.44), hence the computational matrix statement

for (4.44) is

[]ACle=[M]e + Ce(O- o_/2){Vie + Ce0¢[D]eheUe +C._ (0__0+ -_].Je_[D]-

Viewing (4.45) confirms the role that the TWS h parameter set (o_,_,_,) plays in the

algorithm. The 0c and _f terms reside only in the linear algebra jacobian, premultiplied

by Courant number Ce, as modifications to the convection and diffusion terms created

by L(q). In distinction, the 13term resides in both sides of (4.45) as augmentation to the

natural diffusion term (with _).

The Fourier modal solutions for v and g are generated via replacement of the global

assembly form (4.45) with assembly over the FE element pair sharing node "/" in

the d=l mesh, i.e., xy_x L + j_, and for he and U e assumed constants. For example, from

the linear FE basis definition of [M] e in (4.40)

+1

where 82 is the second-order accurate FD diffusion operator. The assembly of [Dle

{Q}e also produces 82 whereas the second-order accurate FD operator

1

A = 7(-)j+l - (')j-1 is produced by assembly of -fvl {eIe.
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Hence, the FD operator-equivalent form of (4.45), for the k=l basis, uniform mesh and

constant convection Ue, is

with the definitions

u A =-C(O-u/2)

u B _-C -h-_+C +-_ (4.47)

Substituting the Fourier modal form (4.32), and (4.35) for n=l, yields the explicit

expression for the amplification factor g for the linear basis TWS h algorithm as

g=l- C(A+UD_'I

Baker and Kim(1987) report the solution for (4.48) as the resolution of g into real and

imaginary components in the form

I I Ca alC2
C _ _ )+m4

8 2

L-

Im31 -oIc
 m51c, ,°2-oo,c2I 13"O + _ +(_1-_0u1)C-_0(_2 -_0) +O(m7)

where mesh parameter definition is m=oM_=2r_x/X, wherek is the mode wave-

length, and C is the (uniform) Courant number. The subscripted Greek parameters

uj and pj in (4.49)-(4.50) are detailed algebraic functions of the parent TWS h

parameter set (u,_,7).

Algorithm dissipation, hence stability (augmentation), is dominated by the

coefficient of the lowest power (m 2) term in (4.49). Substituting the definition

oL1 = u A + u D yields

_-u I = -0-t _ h-U (4.51)

Hence, solution process dissipation is the balance between the physical diffusion,

parameterized by E/hU, and the combination of 0, uand _. For 0=1/2, and u=_C,

numerical dissipation is absent at this level. The parameter _./hU is proportional to
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inverse Reynolds number, which is small unless hU, the local mesh measure times

speed, is the same order as inverse Re, an unlikely occurrence. Hence, both

0 > 1/2 and ]3> 0 in (4.51), will dominate algorithm stability.

Baker and Kim(1987) report more than a dozen dissipative CFD algorithm

constructions that match the TWS h formulation (4.37) for select specific (0:,]3,1¢,_),

including Euler algorithms composed of upwind flux vector splittings. Table 4.1

summarizes the comparative results, by terms in the TWS h operator equation (4.46).

Current research (Chaffin and Baker, 1994) has succeeded in expanding the scope of

this Fourier analysis to include quadratic and cubic FE bases. A manipulation with the

amplification factor solution produces the phase velocity _) defined as

-------C-Ctan'l g¢ coax [I/gR] (4.52)

from which one can determine the relative error in propagation speed of the Fourier

mode of wave number _o. Figure 4.1 summarizes the computed error in amplification

factor (l-g) and the error in phase velocity (U-(_) for the range of FD, FV and FE WS h

and TWS h (]g>0) algorithms. The FE constructions are certainly competitive with the

reference algorithms, and benefits to use of higher degree FE basis functions are firmly

quantized in wave number space.

4.6 Summary

This section has examined the critical issues of algorithm well-posedness,

convergence and stability. The NS form is proven a parabolic perturbation on the Euler

hyperbolic conservation law form. Via definition of a suitable Lyapunov function, and

using the weak statement construction, a set of well-posed boundary conditions are

established for the NS system that default to admissible Euler conditions. The generic

INS construction was then augmented, via a Lax-Wendroff time semi-discretization, to

expand the CFD algorithm statement for a wide class of dissipative constructions.

Following a summary of available asymptotic error estimates under discretization

refinement, the TWS h construction for d=l and the linear basis (k=l) was completed for

Fourier modal assessment of phase error and artificial dissipation. A summary of the

theoretical extension to k=2,3 FE bases completes the section.
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5. The REMI AERO CFD ALGORITHM

5.1 Synopsis

The FE TWS h CFD algorithm for aerodynamics applications has been derived

and theoretically described. The next step is development of the actual matrix

statements corresponding to the matrix algebra system (3.17). The resultant algorithm

is coined "REMI," the acronym for the compressible state variable {_aho, Etot,
Momentum _}T for 1< I _<d.

The matrix formulation is expressed generically, then specialized to the use of

the linear tensor product basis spanning quad and hex-shaped FE domains. Thereafter,

the details of the construction are illustrated as "template" instruction sets for the

AKCESS., software platform, which has now matured to replace the pilot code

originally developed under the contract, c.f., Iannelli(1991). This section develops all
pertinent details of the matrix statement construction.

5.2 Finite element TWS h algorithm nomenclature

Equation (3.17) presents the homogeneous matrix expression {FQ} of the TWS h

CFD algorithm construction. The formation of {FQ} is via assembly over each firdte

element domain E2e of the mesh E2h, i.e.,

{FQ}=s{FQ} (5.1)

The nodal discrete approximation state variable {Q}e is ordered as is the continuum,

i.e., q={p,E,mi}T, with discrete variable names {Q}e={RHO, ETOT, M1,M2,M31eT. The

appearance of velocity ui=mi/p is discretely represented as the nodal ratio

{M//RHO}e.The TWS h defirution at the generic element level is

Tswh ,= Sf2e {N}Lm(qh)d, c

=SE2e {N}(L(qh)-_(q)h_j ('u.u. Oq l
I tCigXk; e

d'c

= JE2e 'NIT+ _j/fJ-/_"/e-s-_{q)h-_':'_lu'u'Oql
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The substitution of (5.3) into the 0-implicit ODE algorithm, recall (3.14), and using

(3.11), then yields the specific integral expressions for (5.2) as

(5.4)

(5.5)

Recalling (2.21), the elemental flux vector definitions for (5.5) are

fj= mjmi/P+EuP6ij • q=tRe-loij (5.6)

[(E+(Eu/Ec)p)mj/p e I(ReEc)-l°ijmj/p-(Pe)-lqj

Finally, the solution parameters appearing in (5.6) are

p - _/-IIEcE-m .an ./2p] (5.7)
Eu k J J )e

Oij=.(Tl'_(mi/P) 8(mjlp) 2_(mk /P) 8 I
+ - .. (5.8)

O_ Oxi 3 Oxk v
e

qj=-k(T3 i_xj l e
(5.9)

and all variables in (5.5)-(5.9) are expressed on D.e according to (3.11), i.e.,
T

The remaining construction in (3.17) is to derive the (Newton) jacobian [JACI,

which is also formed via assembly over the element-level constructions

and

= +oat {RQ}[lAC]e- -[Mle
3{Q} e

(5.12)
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Upon forming (5.12), a quasi-Newton approximation constitutes elimination or

substitution of terms therein, dependent on the specifics of the selected linear algebra
procedure.

The construction of (5.4)-(5.5), hence also (5.12), requires integrals of products of

FE bases, and their derivatives, formed on f_e. This operation is required done on

every element, unless the mesh D h is sufficiently regular such that a specific numerical

quadrature is not required. This can be avoided, for efficiency, in certain instances,

since an inline Gauss quadrature loop can add an order-of-magnitude or more to code

execution time of the basic DO loops, cf., Baker and Pepper(1991, Ch. 6). (The

AKCESS., platform contains both options, and each is "readible" from the identical

template syntax construction.)

The formation of some element integrals involves handling of a coordinate

transformation rlj =_j(x i), since the FE tensor product basis functions are expressed in

the local _j (orthogonal) coordinate system. Figure 5.1 illustrates the essence, where

superscript "hat" signifies the cartesian appearance of every (distorted) D e in transform

space. An element in physical space may possess curved edges/surfaces, and the

necessary coordinate transformation is provided by the FE basis function interpolation

of x i on De. Hence, cf., Baker and Pepper (1991, p. 210), on any element
T

where {Xa'}e contains the global (xi) coordinates of the nodes of De.

Then, to form the matrix [M]e defined in (5.4), the calculus operation becomes

[M]e= fae{N}{N}V detedq (5.14)

where det e is the determinant of the jacobian of the forward transformation

(5.15)

and d_ is the differential element equivalent of dx in (5.4). Since (5.13) is non-linear,

do  donc  om  ro ,mi /
The order of the element matrix (5.14) depends on FE basis polynomial degree

(k) and the problem dimension d. The representative matrix element therein is

(5.16)
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Figure 5.1 Finite element domains in physical space (fie) and in transform space (he)

for tensor product basis form.
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where the indices range l<(ot,]3)<(k+ 1)d, and (o_,]3) are row (column) indicators in {N}

({N}T). The integrand in (5.16) is a polynomial in Tlj, the exact integral of which is

evaluable via the Gauss quadrature replacement
P Q R

mo_,]3 = Z Z ZHpHq Hr integrand lTlj_(rlpriqrlr) (5.17)
p=l q=l r=l

where the integrand evaluation coordinate triples (rip, riq, 11r), and the Gaussian

weights (Hp, Hq, Hr), depend on the degrees (P,Q,R) of the quadrature rule. Figure 5.2

illustrates the d=2 case for the symmetric implementation (P=Q) for 1<P<3.

P/2

X X

X

/7 2

X

X X X

{a) P= ! (b) P=2 (c) P=3

Figure 5.2 Gauss symmetric quadrature coordinates for d=2.

The selection of P is governed by the highest degree in the polynomial integrand; an

exact (symmetric) evaluation results when 2P+1 equals or exceeds this extremum

degree. Table 5.1 lists the corresponding Gauss point coordinates and associated

weights.

Table 5.1 Gauss quadrature coordinates and weights, d=2.

Coordinate Coordinate Weight Weight

Order(P) riP _]q Hp Hq

1 0.0 0.0 1.0 1.0

2 +1_J-3 +1_'3 1.0 1.0

3 0.0 0.0 8/9 8/9

+04Yd.6 +04b-d.6 5/9 5/9

Integration thus being completed, the element mass matrix [M]e becomes the

array of numbers mct,] 3 that depend on the specific element Y_e- Notationally then,
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[M]e = f_2e {N}{ N} T det e drl--- [M200E] (5.18)

where [M200E] is the generic variable name given to the array moc,_ on f2 e. The prefix

"M" stands for (element) Matrix, and becomes replaced by (A,B,C) for d=1,2,3. The "2"

signifies that two basis functions {N} reside in the integral, and the succeeding two

zeroes indicate neither basis is differentiated. Finally, the suffix "E" denotes the matrix

is indeed Element-dependent data.

In the event that det e in (5.16) is nominally uniform on D e, as occurs exactly for

any parallelogram finite element (independent of included angle variation), only minor

interpolation error is introduced by extracting it from the integrand as an average.

Then, the remaining integrand is element-independent, hence quadrature is performed

once only for all elements in I2 h. Notationally, (5.18) is then replaced as

[M]e -- _e fia, {N}{ N} T&I" DETe[ M200] (5.19)

and [M200] is a universal matrix of numbers representing the integral of two non-

differentiated basis functions on d=1,2,3 dimensions for M=>(A,B,C). Further DET e is

proportional to length/area/volume of De and Table 5.2 presents the k=l basis data

Table 5.2 FE k=l basis interpolation matrix [M200] for d=1,2,3

dimension d DI_:i e [A200] [B200] 1C200]

r4 2121

1/2421/
 |1242 /

L21 2 43

1

27

"84244212

48422421

24841242

42482124

42128424

24214842

12422484

21244248

The remaining integrals in {FQIe, (5.5), are contributions from the "residual"

{RQ} e, (5.3). Evaluating all such contributions involves the coordinate transformation

(5.13) via the chain rule, i.e.,
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By definition, the required inverse coordinate transformation matrix is

(5.20)

(5.21)

where [cofactor (i,j)]e is the matrix of signed minors, transformed, of the forward

transformation on _e. The inverse det e in (5.21) cancels the like term in (5.20), and

labeling the cofactor matrix entries as the array "ETIJe" i.e., "etaij" then the first
integrand term becomes

{RQ}e=-ffieETIJ O{N} (f j)edrl (5.22)
e hrli

For example, for q=p, then from (2.1)fj(q=p)=mj, hence

{RR(f)}e = -fh, ETIJe _/} {N}. T drl{M/}e (5.23)

Note the tensor indices are fully contracted in (5.23), hence {RR}e is indeed a single

array (column matrix). The integrand in (5.23) is an order (k+l) d matrix, with each

term therein the sum of l<(i,I,j,J)< d terms. Gaussian quadrature applied to each of

these expressions completes the integrations, hence (5.23) becomes, notationally

{RR(f)} e =-'[M2IOE]{M/} e (5.24)

where 1 < I < d is the sole remaining tensor index.

The "E" suffix in (5.24) indicates the data entries are element-dependent via the

vii-dependence in the transformation matrix ETIIe. These data are products of

differences in nodal coordinates IX/}e, which reduce to element constants for any

parallelogram D e . Hence, committing usually modest interpolation error, the

simplified counterpart of (5.19) for (5.24) is

{RR(f)}e -=-ETIJe[[M2J0]{M'/}e] (5.25)

which also has full contraction of tensor indices. Now, [M2JO] is element-independent

data, hence applicable on every D e that is sufficiently close to a parallelogram, c.f.,

Baker & Pepper (1991, Ch. 6).

The second contribution to the IRQ} e array is from the viscous flux vector f)oj,
which contains derivatives itself, recall (5.8)-(5.9). Therefore, two coordinate
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transformations are involved in the integrand, leading to the representative

contribution, e.g., for q=E,

f_ O{N}T
eOX. Pc Ox.

J J (5.26)

--_CJ_e ""i 'Jje-I f" _{N}(_lqi l--_'-'-'_-"|klrli)_I_-_k lk_ j )ede'edII{TEMP'e

In (5.26), det e in the numerator is canceled as before, however a det e now remains in the

denominator. Therefore, the integrand in (5.26) is a rational polynomial in _j, with the

added complexity of a variable diffusion coefficient k(Tlj)e. Gauss quadrature remains

applicable, however, hence notationally (5.26) becomes

- 1 [M2KK]e{TEMP}e (5.27)

where [M2KK]e is element-dependent data, and the range of the repeated tensor index

pair is 1 < K < d, in accord with the transformed laplacian equivalence.

The computational cost of guassian quadrature in forming (5.27) on every

element is quite substantial, hence a simplified form is again sought. For nominal

parallelogram domains D.e, the transformation metric data in (5.26) are essentially

uniform constants. Hence, minor interpolation error can result upon their extraction,

leading to

O{N}O{N} T

---ZET, .ETKJeDET;'f k, dn{TEMP}¢
Pc Jh e

/hli/hlk (5.28)

=I ETIJeETKJeDET eI{COND}eT[M30IK]{TEMP}e
Pe

Equation (5.28) remains fully contracted over tensor index pairs, and the triple

summation loop on I,J,K, required to form each entry, is clearly defined. The metric

dam ETIJ e is a dxd array, {COND}e 1 is an element-rank row matrix of nodal

conductivity, and [M30IK] is an element-independent, degree-one hypermatrix

interpolating distributed data in concert with two derivative operators, hence the "3."

Thereafter, "0" indicates FE (non-differentiated) basis interpolation of ke, and "II¢'

denote all derivative combinations corresponding to the transformed laplacian, with

range 1 < (I, K) < d.
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This completes the introduction to notational essence for the REMI FE CFD

algorithm. The formulation can now be concisely stated for arbitrary problem

dimension d, whereafter element matrices with prefix "M" become "A,B,C" for the

specific situation. In the following, the distinction between gaussian quadrature and

averaged-metric data construction is highlighted, and AKCE$S., contains both options

via the "E" suffix. Hence, if numerical integration is required, then the hypermatrix

[M30IK] is replaced by _[M30IKE], and the tensor index DO loop remains clearly
indicated.

5.3. REM/algorithm matrix statement illustrations

This section illustrates construction details of the REMI algorithm matrix

statement, (5.2), that becomes assembled, (5.1), to the form the right side of a linear

algebra procedure. For 0t = 0= y in the TWS h formulation, then the lead term (5.4) is

uniform across all members {Q}e of the discrete state variable. Hence,

[M]e{Q_.l-Qn}e =[M2OO]e{Q_.l-Qn}e

I r%°
= M200 .( _M1

P

n+l

/

|M3 Je, n

(5.29)

The "residual" terms, (5.5), typically contain convection, diffusion and

dissipation contributions, "with element matrices generically labeled "[Vie, IDle and

[DB]e" and companion surface integrals with prefix "S". Then, for example, for state

variable member p, and viewing (5.5), (5.6)

{RR},=-{vie -[SnBI<{R.O} 

= "{M210] e {M/} e + 13RUKe {U J} Te[M3OJK]e {RHO}e (5.30)

.{s20%{MrN1}<-SR0r,{u j}rIs300G{R.o}<
In (5.30), the tensor indices contract fully, as they must, and in the TWS h _dissipation

term, the decision is made to element-average the velocity unit vector Uk and

interpolate the convection velocity uj . In the last two terms {MINI}e , and {UJN/} e

contain the nodal values of the dot products mifi i and ujnj. [$200] is the interpolation

surface matrix while [S3000R] is the corresponding _term surface integral matrix, both

created by use of the Green-Gauss divergence theorem in WS N, recall (3.9).

Every matrix in (5.30 is element-dependent, as denoted by subscript "e". In

practice, each can be code implemented via the operation (5.27)-(5.28) in an AKGESS.,
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template instruction set.

(and the time) term is constituted of six types of data, i.e.,

where:

Viewing (5.28), every element-level contribution to the residual

{FQ} e = (data)(data)e {data}e T (metrics, det)e [hypermatrix]{Q or data}e

= global constants

= element average data

= element distributed data

= ETIJ e and exponent on DET e

= FE matrix or hypermatrix

= FE matrix post multiplier

(data)

(data) e

{data} e

(metrics, det) e

[hypermatrix]

{Q or data)e

(5.31)

The "long hand" form of the first right side term in (5.30) for d=2 is

-DETO(ETlle[lVI210] + ET12e[M220]){M1}e

+(m  [M2 o]+rr22 (5.32)
The AKCESS., storage arrangement for the d x d metric data set is a d x 1 column

array, i.e., with locations

d = 2: ETIJe _ ; d = 3: ETIJe _ 5

6

Therefore, the d=2 template syntax instruction set for (5.32) is,

{RR(f)} e =fix X )(102;0XB210)(M1)

+(-X X X304;oXB220XM2) (5.33)

An empty parenthesis defaults to unity; the (-) entry equals negative one. The "0"

separating metric data entries is interpreted as a plus sign, while the "0" following the

semi-colon is the exponent on DET e. The d=3 template expression is

{RR(f)} e =(-X X X10203;0)(C210)(M1)

+ (-)( X X40506;0Xc220XM2) (5.34)

+ (-x x ){70809;0){C230XM3)

Comparing (5.30) to (5.34), the compact notation in the former contains several

detailed terms. This is more evident when tensor summation indices are involved in

the residual expression, e.g., the second term in (5.30). However template syntax clearly

defines every term in such summations. Figure 5.3 illustrates the complete TWS h

algorithm statement for {FR}e in d=2. The line below the command line "RESIDUALS,"

and the variable definition "RHO 1..." contains (5.33), and the next 16 lines constitute
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the _-dissipation term involving [M30JK] in (5.30).

instructions include:
The common data in these

(HBM) : a global on-off switch for dissipation

(.,UMGB) : equal to _3/hal, where 13is the dissipation coefficient and

lul-1 normalizes u k to fLk

(...;-0.5) • the net ex_.?2ent on DETe, for length scale h in (5.5) equated
to (DETe) /

The last two (surface) matrix expressions in (5.30) become template instructions

on no-flow/inflow/outflow surfaces, according to several options. On a no-flow

surface, minilnence ujnjl vanishes identically, so no evaluation results, whereupon the

TWS h algorit_ automatically enforces (in the weak sense) the inviscid flow tangency

boundary condition. Since mi_ i never vanishes at inflow/outflow, and the actual

distribution is (almost) never given data (recall Table 2.1), the AKCESS., remedy is to

"undo" the integration by parts that created the [S200]e term. Looking back to (5.3) and

(5.5), this is easily accomplished by revising (5.22)-(5.23), the definition of IRR(f)_e, to

am a{N}r
{RR(f)}e=ffz,{N} d'c= f,,{N}ETIJ' dq{MJ}" (5.35)

=[M2OJE]e{MJ} e = ETIJe[M2OI]{MJ} e

Figure 5.3 confirms the template of this rearrangement, as the first few lines on inflow

(set 3) and outflow (set 4) boundaries.

The surface integral created by the tensor [5-dissipation term involves a

directional derivative contracted with velocity unit vector Uk" This also is typically not

g/yen data on any through-flow boundary, although the assumption of vanishing

normal derivative is often implied. Numerical experimentation, discussed in Section 6,

confirms that replacement of the tensor _ diffusivity form (4.23) with the positivity-

ensured form (4.24) better admits weak enforcement of vanishing normal derivatives.

The second matrix term in (5.30) can then be replaced as

[DB]e{RHO}e=_R {UMAG}T[M3OJJ]e{RHO}e (5.36)

The companion surface integral [S30NN]e is not formed, and {UMAGJe in (5.18) is the

nodal distribution of Ivl as computed via (4.24). The template in Fig. 5.3 illustrates the
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TITLE **** TEMPLATE FILE TEMP.CNS2D.REMI ****

CNS2D TWS ALGORITHM, TENSOR MATRIX A JACOBIANS (12/23/93)
RESIDUALS

RHO 1 # VARIABLE, SET NO., --- [M] * {[RHO.NEW] [RHO.OLD]}
() () () (;1) (B200) (-RHO)

RHO 2 # VARIABLE, SET NO., --- {RQ} = IV] {Q} + [D] {Q} + [DB] {Q}
() () () (102;0) (B201) (MI) + () () () (304;0) (B202) (M2)

+(HBR) (U 1,U MGB)(U1) (11;-0.5)(B3011) (RHO)
+ (HBR) (U 1, UMG B) (U2) (12;-0.5) (B3011)(RHO)
+ (HBR) (U2, UMGB)(U 1) (21;-0.5)(B3011)(RHO)
+(HBR) (U2,UMGB) (U2)(22;.0 5)(B3011)(RHO)
+(HBR)(U ],UMGB)(U1)(13;.0 5)(B3012)(RHO)
+(HBR) (U 1,UMG B)(U2)(I 4;.0 5)(B3012)(RHO)
+ (HBR) (U2,U MGB) (UI)(32;.0 5)(B3012)(RHO)
+(HBR)(U2 UMGB)(U2)(24;-0 5)(B3012)(RHO)
+(HBR)(U1 UMGB)(U1)(31;-0 5)(B3021)(RHO)
+(HBR)(UI UMGB)(U2)(32;-0 5)(B3021)(RHO)
+(HBR)(U2 UMGB)(U])(41;-0 5)(B3021)(RHO)
+(HBR)(U2 UMGB)(U2)(42;-0 5)(B3021)(RHO)
+(HBR)(U1 UMGB)(U1)(33;-0 5)(B3022)(RHO)
+(HBR)(U1 UMGB)(U2)(34;-0 5)(B3022)(RHO)
+(HBR)(U2 UMGB)(U1)(43;-0 5)(B3022)(RHO)
+(HBR)(U2 UMGB)(U2)(44;-0 $)(B3022)(RHO)

RHO 3 # VARIABLE, SET NO.,--- INFLOW BOUNDARY SET FOR (RQ)
+(PHRI)(UI UMGB)(U1)(11;-0.5)(B3011)(RHO)
+(PHRI)(U1 UMGB) (U2) (12;-0.5)(B3011)(RHO)
+(PHRI)(U2 UMGB) (U 1)(21 ;-0.5) (B3011)(RHO)
+(PHRI)(U2 U MGB)(U2)(22;-0.5) (B3011) (RHO)
+(PHRI)(U1 U MG B)(U 1) (13;-0.5)(B3012)(RHO)
÷(PHRI)(U1 UMGB)(U2)(14;-0.5)(B3012) (RHO)
+(PHRI)(U2 U MGB)(U 1) (32;-0.5)(B3012)(RHO)
÷(PHRI)(U2 UMGB)(U2)(24;-0 5)(B3012)(RHO)
+(PHRI)(U1 UMGB)(U1)(31;-0 5)(B3021)(RHO)
÷(PHRI)(U1 UMGB)(U2)(32;-0 5)(B3021)(RHO)
+(PHRI)(U2 UMGB)(UI)(41;-0 5)(B3021)(RHO)
+(PHRi)(U2 UMGB)(U2)(42;-0 5)(B3021)(RHO)
-_(PHRI)(U1 UMGB)(UI)(33;-0 5)(B3022)(RHO)
÷(PHRI)(UI UMGB)(U2)(34;-0 5)(B3022)(RHO)
+(PHRI)(U2 UMGB)(U1)(43;.0 S)(B3022)(RHO)
÷(PHRI)(U2 UMGB)(U2)(44;-0 5)(B3022)(RHO)

RHO 4 # VARIABLE, SET NO.,--- OUTFLOW BOUNDARY SET FOR {RQ}
÷(PHRO) (U 1,UMGB)(U1)(ll;-0.5)(B3011)(RHO)
÷ (PH RO) (U 1, UMGB)(U2)(12;-0.S)(B3011)(RHO)
÷(PHRO)(U2,U

+(PHRO)(U2,U

+(PHRO)(UI,U
÷(PHRO)(U1 U
+(PHRO)(U2 U
+(PHRO)(U2 U
÷(PHRO)(U1 U

÷(PHRO)(U1 U
+(PHRO)(U2 U
+(PHRO)(U2 U
÷(PHRO)(U1 U
+(PHRO)(U1 U
÷(PHRO)(U2 U
+(PHRO)(U2

MGB)(UI)(21;-0.S)(B301 !)(RHO)
MGB)(U2)(22;-0.5)(B30 i I)(RHO)

MGB)(U I)(13;-0.5)(B3012)(RHO)

MGB)(U2)(14;-0.5)(B3012)(RHO)
MGB) (U 1)(32;-0.5) (B3012) (RHO)
MGB)(U2)(24;-0.5)(B3012)(RHO)
MGB)(U 1) (31;-0.5)(B302 I)(RHO)
MGB)(U2)(32;-0.5)(B3021)(RHO)
MGB)(U1)(41;-0.5)(B3021)(RHO)
MG B)(U2)I42;-0.5)(B3021)(RHO)
MGB)(U])(33;-0.5)(B3022)(RHO)
MGB)(U2)(34;-0.5)(B3022) (RHO)
M GB)(U 1) (43;-0.5)(B3022)(RHO)

UMG B) (U2)(44;-0.5) (B3022)(RHO)

Figure 5.3 AKCESS.AERO REMI template for {FR}e
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removal of the (5.30) term and replacement with (5.18) on inflow and outflow

boundaries. Therein, (PHBI) and (PHBO) are "switches" defined in the "SCALARS"

array to facilitate decisions on use.

The convection terms in TWS h for state variable members m i and E are non-

linear, hence algorithm and AKCESS.. manipulations are similarly appropriate to

account for TwSh-created surface integrals. For example, for axial momentum the

residual contains the terms

÷ [s]_{M1}_-[sol_{M_}_-[soBI_{M_}_ (5.37)

Viewing (5.5), (5.8), the FE matrix syntax for (5.37) is

{RM1} e --{u]}TeIM3OIO]e{M1}e + Eu[M201]e{P}e

-{U/N/}yIS3000]¢{M1}¢-ISDB] {M1}¢

Comparing the form of (5.38) to (5.5), note that the pressure term is not subjected to the

Green-Gauss divergence operation, that (non-D) viscosity is element-averaged rather

than distributed, and since ] and K are repeated indices in the Re -1 term, a

simplification occurs. For the application of (5.38) to a turbulent flow, the accounting

for the large variation in turbulent eddy viscosity pt, recall (2.16), is readily

accomplished via alteration of the diffusion terms in (5.38) to hyperrnatrix form

where {MUT}e contains nodal pt on f_, and a companion change occurs to [SD] e {M1}e.

Various rearrangements to (5.38)-(5.39) are required for constraints created by

no-flow and through-flow boundaries. As with {RR}e , (5.30), the inviscid tangency

boundary condition is intrinsic to (5.38) with no evaluation of the [$3000] term.

Similarly, at inflow and outflow boundaries, rather than estimate the missing data

{U]N]} e, the divergence thereon is "undone" yielding the chain rule replacement

-[vl_{M1}e = {u]}T[M30%{M1}e + {M1}T[M30% {U]}e
(5.40)

= {U]}eT([M300J]e *[M3J00]e _M1}e
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which illustrates differentiation index manipulations to simplify the variable

groupings. The discussed variation on the 13-terms [DB]e and [SDB]e on through-flow

botmdaries is employed on all state variable residuals.

The remaining surface integral [SD]e is typically assumed to vanish on through-

flow boundaries, and admits the specific implementation of a drag boundary condition

on an impervious surface. Returning to the continuum form, (5.5)-(5.8), the weak
statement term is

1 r  lNt 1 - sdo
I

The surface integral term clearly generalizes to oijn j which is the shear stress on a

boundary surface segment of OQ, the boundary of Q. Hence, in (5.37), for a slip wall

with drag, the replacement expression is

"[SD]e{M1}e = -Re-l[s200]e {TAU1N}e (5.42)

where {TAU1N}e contains the applied shear stress relationship for m 1. Figure 5.4

illustrates excerpts from the AKCESS., template for (5.37), with modifications, for d=2.

5.4 The REMI RaNS/E algorithm

With notational preliminaries completed, the REMI FE TWS h algorithm for

RaNS/E aerodynamics applications is now detailed. The development herein uses

hybrid compact notation; the AKCESS.* template with full detail for d=2 is included in

Appendix A.

The generic element level TWS h matrix statement is

.l,<Ql." +,,,{oi.,<Ql..+l+l.,<Ql,,)e
with contributions

] I x_XkJ e

(5.43)

(5.4)

(5.5)
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TITLE
CNS2D

**** TEMPLATE FILE TEMP.CNS2D.REMI ****

TWS ALGORITHM, TENSOR MATRIX A JACOBIANS (12/23/93)

+(HBR)(U1,UMGB)(U2)(12
+(H BR)(U2,UMGB)(U 1)(21
+ (HBR)(U2,UMGB) (U2)(22
+(HBR)(U1,UMGB) (U 1)(13
+(HBR)(U 1,UMGB)(U2)(14
+ (HBR) (U2, U M G B) (U 1 )(32
+(HBR)(U2 UMGB)(U2)(24
+(HBR)(U1 UMGB)(U1)(31
+(HBR)(U1 UMGB)(U2)(32
+(HBR)(U2 UMGB)(U1)(41

RESIDUALS

M1 1 # VARIABLE, SET NO., --- [M] * {[M1.NEW] - [M1.OLD]}
()() ()(; 1) (B200)(-M 1)

MI 2 # VARIABLE, SET NO., --- (RQ} = [V] (Q} + [D] IQ} + [DB] (Q}
(-)0(UI+U2) (102;0) (B3010) (M1) + (-) () (UI+U2) (304;0) (B3020) (M1)

+(EULER) () () (1;0) (B201) (PRSC) + (EULER) () () (3;0) (B202) (PRSC)
+ (PDUM2,REI)() () (1122;- 1) (B211)(U 1)+(PDUM2,REI)()()(3344;.1)(B222) (U 1)
+(PDUM2,REI)()()(1324;-1)(B221)(U1)+(PDUM2,REl)()()(1324;. 1)(B212)(U 1)
+(HBR)(U1,UMGB)(U1)(11 -0 5)(B3011)(M1)

5)(B3011)(M1)
5)(B3011)(MI)
5)(B3011)(M1)
5)(B3012)(M1)
5)(B3012)(M1)
5)(B3012)(M1)
5)(B3012)(M1)
5)(B3021)(M1)
5)(B3021)(M1)
5)(B3021)(M1)

-0
-0
-0
-0
-0

;-0
-0
-0
-0
-0

+(PHRI)(U1
+(PHRI)(U2
÷(PHRI)(U2
+(PHRI)(U1
+(PHRI)(U1
+(PHRI)(U2
+(PHRI)(U2
+(PHRI)(UI
+(PHRI)(U1
+(PHRI)(U2
+(PHRI)(U2
÷(PHRI)(UI
+(PHRI)(U1
+(PHRI)(U2

+(HBR)(U2 UMGBJ(U2)(42 -0 5)(B3021)(M1)
+(HBR)(U1 UMGB (U1)(33;-0.5)(B3022)(M1)
+(HBR)(U1 UMGB)(U2)(34;-0.5)(B3022)(M1)
+(HBR)(U2 UMGB)(U 1)(43;-0.5)(B3022)(M 1)
+(HBR)(U2 UMGB) (U2) (44;-0.5)(B3022)(M1)

M1 3 # VARIABLE, SET NO.,--- INFLOW BOUNDARY SET FOR [RQ}
()()(U I+ U2) (102;0)(B3010)(MI)+() ()(U I+U2) (304;0)(B3020)(M i)

+()()(Ul+U2)(102;0)(B31P1)(M1)+()()(UI +U2)(304;0)(B32P2)(M1)
+(PHRI)(U1 UMGB)(UI)(ll;-0 5)(B3011)(M1)

5)(B3011)(M1)
5)(B3011)(M1)
5)(B3011)(MI)
5)(B3012)(M1)
5)(B3012)(M1)
5)(B3012)(MI)
5)(B3012)(MI)
5)(B3021)(M1)
5)(B3021)(M1)
5)(B3021)(MI)
5)(B3021)(M1)
5)(B3022)(M1)
5)(B3022)(M1)
5)(B3022)(MI)

UMGB)(U2)(12;-0
UMGB)(UI)(21;-0
UMGB)(U2)(22;-0
UMGB)(U1)(13;-0
UMGB)(U2)(14;-0
UMGB)(U1)(32;-0
UMGB)(U2)(24;-0
UMGB)(U1)(31;-0
UMGB)(U2)(32;-0
UMGB)(U1)(41;-0
UMGB)(U2)(42;-0
UMGB)(U1)(33;-0
UMGB)(U2)(34;-0
UMGB)(UI)(43;o0

+(PHRO) (U2,UMGB)(U I)(21;-0
÷ (PHRO) (U2,UMGB)(U2)(22;-0
+(PHRO)(U I,UMGB)(UI)(13;-0
+ (PHRO) (U I,UMGB)(U2)(I 4;-0
+ (PHRO) (U2,UMGB)(U 1)(32;-0
+(PHRO)(U2 UMGB)(U2)(24;-0

*(PHRI)(U2 UMGB)(U2)(44;-0 5)(B3022)(MI)
MI 4 # VARIABLE, SET NO.,--- OUTFLOW BOUNDARY SET FOR {RQ}

()()(UI +U2)(102;0)(B3010)(M I)+()()(U 1+U2)(304;0)(B3020)(M 1)
÷()()(U 1 +U2)(102;0)(B31P1)(M 1)+()()(Ul+U2)(304;0)(B32P2)(M 1)
+(PH RO)(U 1,UMGB)(U1)(ll;-0.$)(B3011)(M1)
÷(PH RO)(U 1,UMGB) (U2)(12;-0 5)(B3011)(M1)

UMGB)(UI)(31;-0
UMGB)(U2)(32;-0
UMGB)(UI)(41;-0
UMGB)(U2)(42;-0
UMGB)(UI)(33;-0
UMGB)(U2)(34;-0
UMGB)(U1)(43;-0
UMGB)(U2)(44;-0

5)(B3011)(M1)
5)(B3011)(M1)
5)(B3012)(M1)
S)(B3012)(M1)
5)(B3012)(M1)
5)(B3012)(MI)
5)(B3021)(M1)
5)(B3021)(M1)
5)(B3021)(M1)
5)(B3021)(MI)
5)(B3022)(M1)
5)(B3022)(M1)
5)(B3022)(M1)
5)(B3022)(M1)

Figure 5.4 AKCESS.AERO REMI template for {FM1}e

+(PHRO)(UI
+(PHRO)(UI
÷(PHRO)(U2
+(PHRO)(U2
+(PHRO)(UI
+(PHRO)(UI
÷(PHRO)(U2
+(PHRO)(U2
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As stated previously, for _=0--y in the TWS h procedure, (5.4) is universal for all IQI in
the form

All surface integrals created in the residual (5.5) by the divergence theorem are

handled as discussed in the previous section. Therefore, the following residual

expressions contain only terms on the generic FE domain De. By state variable
member:

{RR}e ='-[M2J0]e{MJ}e +_ROKe{Uj}T[M3OKJ]e{RHO}e (5.45)

{RE} e =-{UJ};[M3OJOJe{ETOT-(Eu / Ec)PRES}e

+ Pe'I[M2KK]e{TEMP}+_eOK{UJ};[M3OKJ]e{ETOT}e

(5.46)

{ILM1}e=-{uj}T[M3OJO]e{M1}e+Eu[M201]e{PRES}e
(5.47)

{RM2} e =-{u]}T[M30]O]e{M2}e + Eu[M202]e{PRES}e

+Re'I[M2KKle{U2}e + Re'l[M22K]e{UK/3}e

+_2UKe {u]}T[M3OKJ]e {M2} e

(5.48)

{RM3} e =-{uj)T[M3OJO]e{M3}e + EuIM203]e{PRES}e

+Re-I[M2KK]e{U3}e + Re'l[M23K]e {UK/3} e (5.49)

+_30Ke {uj}T[M3OKJI¢ {M3} e

The next step is to derive the (Newton) jacobian (5.11), which is constructed as

the assembly of

O{FQ}¢ =[M] e +Oat_e (5.12)[JAC]e = OiQ} e

The [M]e term is common to all residuals, however the derivatives of {Q}e requires use

of the chain rule. In general, column matrix differentiation by a column matrix is the

expression preceding the post-multiplication column matrix. For example, for {RR}e

using (5.45),
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_{R.O},=a{R.O)e
(5.50)

+o_R0rA_lo}r[u3Jro],a{_/_o}, - _IMr/_ol
+e_t_RUJe{RHO}_[M3KJO]e.,t . Je

a{_o}, aiR.Or,

where juxtaposition of pre- and post-multiplication column matrices coincides with

tensor index rearrangement in the element hypermatrix [M3...]. Note also that after

{UJ}e and U_f e transportation, these data are replaced by their nodal state variable

definitions and the element-average definition is interchanged such that a matrix

differentiation always results.

The matrix derivatives appearing in the last two rows of (5.50) are readily
formed using calculus rules, e.g.,

0{MJ/RHO}e =_FMI/(RHO)2__U//(RHO)2 2
" _{v_o}e (5.51)

and I UJ/RHO Ie is a diagonal element-order matrix with entries equal to nodal velocity

divided by density. Hence, substituting (5.51) into (5.50), and recognizing that (K,J) are
"dummy" indices, yields

0{Ri.iO}e (5.52)

-20_R0r,{RUO}_[M3Jr0]:Ul/R.O._

The "off-diagonal" jacobian matrix [RR,E]e , i.e., the derivative of [RR}e with

respect to [ETOTIe, is empty, since [ETOT]e is not present explicitly or implicitly in

{RR] e. The jacobian matrix [RR,M/] has several terms, as follows from (5.45)

+0 , RUI IP.HOIrIM3 0]e f / OI
" O[M/}e '_

The derivative of {M1}e with respect to [M/} e is the Kronecker delta, as shown in the

[M2/0] e term, hence the second/third right-side terms in (5.53) involve the diagonal
matrix
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O{MJ/RHOI,
-sH [_/RH°J

Labeling inverse density as "OSRH," i.e., one-slash-rho, (5.53 becomes

(5.54)

[RR,M/] e = 0At[M210]e + 20AtiSRfJKe {RHO} Te[M3KJO]e[OSRHJe (5.55)

Note that "/" is a free tensor index in (5.55), hence there are d expressions contained
therein.

Equations (5.52) and (5.55) express the element matrices filling the first row (by

blocks) of [JAC]e, (5.12). The second (block) row therein contains the Newton jacobian

contributions for total energy residual [RE}e , which brings the requirement to handle

the equation of state variable form (5.7). The self-differentiated jacobian is

[RE, E]e =-0_It{uj}T[M30J0] +0AtEuEc-I{uj}TrM30J01a{PRES}e
e Je ,et Je _{ETOT}e

+OAtPe" IIM2KK]e _{TEMP}e
O{ETOT}e +OAt_EfJKe{Uj}Te [M3OJK]e

Equation (5.7)contains the equation of stateconservation law form, hence

(5.56)

a{PnES}, a f( -')  ETOT1 ( E!Ecr,J
_{ETOTIe=a{ETOT}e[ F,u J_ 'e-

where rlj is the identify matrix. Using (5.57) and (2.6), via the chain rule

(5.57)

a{_MP}, a{_MP}¢ o_{PP,ES}E (_,_,_ECl.ij (5.58)
_{ETOT}_- _{PRES)e a{ETOT)e--I'OSRH.Ie

for the non-dimensionalization of (2.6) via a uniform reference thermodynamic state,

recall Section 2.4. If Pr is selected otherwise, then a non-D gas constant will appear in

(5.58). With (5.50)-(5.58), (5.56) becomes

[RE,E]e = --OAtIuj}T[M3OJO]e +OAt(¥- l)mk{ojl rlM30J0]e
Ec

(5.59)

The off-diagonal jacobians [RE,R]e and [RE,M/]e involve chain-rule operations

for appearance of pressure and velocity in the convection and dissipation terms or[] e
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IRE, R] e = -{ETOT + (Ec / Eu)PRES}eT[M30J0]e

-_-_u{UJI Te[M3OJO] e _{PRESIe
a{lrmo} e

_{MJ / RHO}e

a{RHO}e

+ 1 [M2KK] 0{TEMP_} e + 213EOK e {ETOT}Te[M3JKO]e O{MJ IRHO}e
re a{RHOJe a{RHO}e

(5.60)

All but the second and third term derivatives are established. For the later

a{TEMP} e a{PRES / RHO}e
= =-FPRES/(RHO)2Je = - FTEMP/RHOJ e (5.61)

a{_o} e a{R.O}_

for the consistent non-dimensionalization. The second derivative can be expressed via

(5.7), the state variable form, or the equation of state (2.6). For the former, and element-

averaging one momentum term

a{RI-IO}e - b{RHO}e

=+(7-1)MKe['MK/(RHO)2Je = _ul)ruKUKJe (5.62)
2Eu

Conversely, using (2.6) with consistent non-D

O{PRES}¢

O{RHO} e =rTEMPJe (5.63)

Hence, replacing the diagonal matrix argument in (5.61) with FTSRHJ, i.e., "T slash p,"

and using (5.51), (5.61)-(5.63), (5.60) becomes

[RE, Rle = 0At{ETOT + (Ec / Eu)PRES}Te[M30J0]e[UJSR, Je

+ 0At(7-l)EC2Eu2{UJ}Te[M3OJO]e [UKUKJ e

OAt

---_e [M2KK]e

-20,MBEUKeIETOT i_[MBJKOIeFUIsRJ e (5.64)

The derivation of the jacobian [RE,M/]e involves similar details; using (5.46)
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[RE,M/]e =-OAt{uj}T[M3OJO] Eu _{PRES}e

--0at{ETOT+(Eu/Ec)PREs}TIM30J0] 0{MJ/RHO}e
-e, ' _{M/}_

+ °a_r,-- ,-,-, a{TEMP}e+ 20atOK{EToT}TfM3KJO1a{MJ/RH°}e
-_e ['v''_A^ J 3{M/} e _, , _{M/}e

By terms, the new chain rule derivatives needed are

(5.65)

O{PRES}e --(V-I) O [RHo MK21=--(V-I)[ MK .J_IK=-_[UIJ e (5.66)
a{M/} e 2Eu 0{IV_/}e " ,e Eu RHO

_I_st.._l_, _.o1____,-./_{/_,_.o/_}
0{MI}e _(MI) e 2Eu 0{MI}e

_ -(v-l) [MK/RHO2.JsI K _ -(v-l) [UISRJ e (5.67)
Eu Eu

hence (5.65) becomes

--0z_t{ETOT + (Eu I Ec }PRES} T[ M3010]e[OSRH Je

-'OAt[V- I)[M2KK]e[UISRJe+peEu 20_StOKe {ETOT} Te[M3KIO]e[OSRHJe (5.68)

and this completes the Newton jacobian for the energy variable.

The same matrix calculus operations lead to the momentum TWS h statement

jacobian. The coupling to density yields, using (5.47)-(5.49) with I the free index

[RM/, R]e =-.OAt{M/}eT[M3OJO]t O{IVlJIRI-IO}e

"e{_o}.

+0_tEu[M201] e 0{PRES} e OAt 0{M//RHO}e+--[M2KK]

+OAt[M21K] o_{MK/RHO} _{MJ / RHO}e

Re t ,e 3{RHO} e +2OAtf31OKe{MI};[M3TKO]e. 3{RHO} e

(5.69)
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All needed chain rule derivatives are available, hence the final form is

[RMJ, R]e = +OAt{MI}Te[M3OJO]eFU]SRJe + 0At(T-1)[M201]eFUKUKje
2

-0atFM2KK1 [OlSRJe-0_t[M21K] FUKSRJe
Re t Je Re t Je

-20t_lOKe {MI} Te[M3JKO]e FUJSRJe (5.70)

The derivative of {FM/}e with respect to the energy variable directly produces
the jacobian via (5.7) as

[RM:,E]e _" . a{P_S} e
= t:u[M201Je _{ETOT}e =(Y-1)Ec[M2Ol]e (5.71)

The self-coupling jacobian contributions are

O{RM/}e " =[RMI, MI] e
-a{ML}e °IL _ _

0{M/} {M/}T[M30J0] e a{MJ/RHO} e
=OA {uj}T[M3OJO]e _ _{ML}e

+Eu[M201]ea{PRES}e+_[M2KK] e a{_/RUO}_
alML}e aIML},

+3._[M21K] e a{MK/RH)}, . T aiM/} e-. . +I].UKe{UJ}_ M30KJ
aiML/_ • " [ ]eaIMZJ_

+2_.0Ke IM/} TIM3JKO la{MJ /R.HOIe -_6IL/ e, J a{ML}e
(5.72)

Enforcing the Kronecker delta, using (5.66), and for subscript bar denoting not a

summation index,

[RM_IMIle =-0At{UJ}Te[M30J0]-0_{M3010}eFOSRHJe

-'°at(Y-l_M2Ol]eFUIJe + OmrM3KK] FOSRHJe
- Re t Je

+0Z_[M3/I] FOSRHJe +OAt_ IOKe{Uj}Te IM3OKJ] e3Re t --Je

+OAt_ IOKe {M31K}e FOSHRJ (5.73)
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The non-self coupled jacobians are also derived from (5.72), by removing the

Kronecker delta and replacing it with the constraint I _ L. Then, the remaining

contributions to the TWS h algorithm Newton jacobian include

[RMLMJ]e =---Oz_t{M/}T[M3OJO]e FOSRHJ e

_0a  _l)[M201jeFLrlj e + Oat [M21J] rOSRHJ e
3Re L Je

10/ e J/ 0J,rOSRHJe (5.74)

5.5 Summary

This section has developed the complete matrix statement of the FE TWS h CFD

algorithm for compressible aerodynamic flow prediction. The "computable" form is the

Newton algorithm (3.17), each contribution to which is constructed as the assembly of

(5.4),(5.5) and (5.12), over the elements Fte of the discretization fth. Gauss quadrature is

available to construct each associated integral to definable precision, and a significant

reduction in computer execution (:ost accrues to an averaged-metric formulation that

yields universal element master matrices. Implementation of boundary conditions, as

well as both derived TWS h dissipation mechanisms, is detailed. For reference,

Appendix B collates the TWS h algorithm matrix statements, and Appendix C contains

the AKCESS., template for d=2.
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6. AUXILIARY PROCEDURES, LINEAR ALGEBRA

6.1 Synopsis

The FE TWS h CFD algorithm for aerodynamics applications is defined, including

imposing of admissible boundary conditions and two numerical dissipation

algorithms. Auxiliary procedures complementing this algorithm include initial

condition generation, an implicit Runge-Kutta ODE algorithm, an equilibrium real-air

solution procedure and a matrix tensor product factorization of the Newton jacobian

yielding a block-(2k+l) matrix quasi-Newton procedure. Each of these options exhibits

a certain computational efficiency potential and this section derives and presents these

auxiliary methodologies.

6.2 Initial condition generation

The RaNS/E conservation law system is tightly coupled in its state variable q(x,t), in

concert with the equation of state p=p(q), as an initial-boundary value problem. The

boundary condition (BC) well-posedness issue is well resolved, however this is not so

for an initial condition (IC) specification. This IC problem is exacerbated when the

freestream flow is subsonic, since to specify the principal momentum component is not

an admissible BC.

One "industry-standard" resolution is to uni-directionally impose the design

freestream principal momentum component everywhere, then let the code "crunch"

long enough to self-generate an Euler, BC-satisfying state variable distribution

{Q(t>to)}. An alternative is interpolation of quasi-one dimensional analytical solutions

(isentropic, inviscid) onto the geometry such that flow tangency is at least an IC

property, cf., lannelli (1991). With the additional assumption of irrotational, a

tangency-and thermodynamics-true, multi-dimensional IC generation procedure

accrues to a compressible potential flow solution.

Following experimentation with the alternatives, an iterative potential flow IC

generation process that includes both tangency and thermodynamics is developed. It

constitutes a pair of Galerkin weak statements, along with the isentropic/adiabatic

stagnation energy analytical solution. The non-D steady state form for continuity is

V-m = O, which coupled with the irrotational assumption u =-V(_ yields

L(,)=-V.pV_ =0 (6.1)

On flow tangency boundaries, V¢._ =0, while atinflow and/or outflow boundaries
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-VO:.fi = [-U in

[+U out (6.2)

where Uoc is assumed given data. Recalling Table 2.1, for subsonic inflow, specification

of Uin is inadmissible; however, m-k=0 is appropriate, hence _(Xin)=0 is the

available Dirichlet constraint.

The Galerkin weak statement for (6.1)-(6.2) is

wsN =-fa {N}L(_))d'¢ = 0 (6.3)

which when discretized, and in the developed nomenclature, yields the computable
residual {Rd:}= S{RqJ}e and

e

{R¢Ie = {RHO};[M30KK]e{PHI}e +{RHO}Te[S3OOOIe{UJNJ}e =[0] (6.4)

In (6.4), {RHO}e is the nodal distribution of density on lle, while {UJN/J e is the surface

nodal effiux vector implementation of (6.2).

Density is an unknown in (6.4), hence an iterative strategy is required for its

estimation. Therefore, solution for (6.4) is cast in Newton algorithm form (3.17), with

element-level quasi-Newton jacobian

[IAqe =-[R*'*le = {RHo}T[M30KK], (6.5)

where (6.4), at iteration level p, is the equivalent of {F_}eP.

The output from (6.4)-(6.5) is the pth estimate of discrete potential function, from

which is required to extract a velocity distribution estimation for the adiabatic energy
equation

h = ho -lu2 (6.6)
2

where subscript "zero" is the stagnation reference state for enthalpy h. For arbitrary

meshing, a Galerkin weak statement on the defining equation for potential function is

ws N(u)--f.{N}(u+v,) Nd .0 (6.7)

The discretization of (6.7), in element level notation, produces the l</<d algebraic

equations

{RUI} e = [M200le {U/.}T + [M20I] e {PHi}e p = {0} (6.8)

which are linear and separable. No BC requirements exist, since the divergence

theorem was not used, and (6.8) is directly solvable in global form as

[M200]{UI} = --{M20I]{PHI} (6.9)
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The output from (6.9) is the pth estimation of the nodal velocity field. For reference,

Fig. 6.1 shows the two group AKCESS., template for (6.4)-(6.5) and (6.8)-(6.9). With

{UI}eP, (6.6) in non-D variables yields at every node of f2 h

T= TO -('t-1)Ma2(UFUI ) (6.10)
2

where Ma r is the input reference Mach number, recall (2.20). From the definition of

Mach number, and (6.10)

Ma=Mar U_-T (6.11)

whereupon the isentropic adiabatic stagnation solution for density is

I,Pr _. 2 ] (6.12)

where Pr is the defined reference state for non-D, which may differ from stagnation
density P0.

Equation (6.12) provides the pth estimate for density (distribution on Dh), which is

then inserted into (6.4) to complete evaluation of {RO}P. The iterative sequence (6.4)-

(6.12) typically converges to e < 10 -4 in 3-4 iterations for subsonic free stream flows

with only a local supersonic bubble. At convergence the (non-D) pressure distribution

is completed as

p
J (6.13)

hence the nodal distributions [UI}, {PRES}, {RHO} and {TEMP} are filled with IC data.

It is then an elementary task to establish the corresponding state variable {Q(to) e.

6.3 Implicit Runge-Kutta algorithm

The TWS h FE algorithm development, (3.13)-(3.17), employed the 0-implicit Euler

single step ODE algorithm family for exposition. An alternative implicit Runge-Kutta

(IRK) ODE algorithm, developed by Iannelli(1991) possesses certain operational

features superior to the 0-family for aerodynamics application.

As stated in Section 3, a weak statement for the RaNS/E system always produces an

ODE system of the form

WS h =[M]_ t } + {RQ} = {0} (6.14)

The coupling "mass" matrix [M] in (6.14) yields a non-standard ODE form. Hence,

conceptually multiply through by [M] "1, and then changing to the scalar lower case

notation used in the ODE literature, the wsh-equivalent ODE system is

dq= f(q 't) (6.15)
dt
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In (6.15) form, the 0-implicit Euler ODE algorithm (3.14) is

qn+l-qn =at(%+l +(1-0)fn) (6.16)

In comparison, the two-stage, diagonally-implicit Runge-Kutta ODE algorithm is

qn+l -qn = At(blk 1 +b2k2)

kl-S(t. + l kl)

k2 =J_tn +c2At, qn +_21Atk 1 +0_2Atk 2)

(6.17)

where subscript n is the time step index and At= tn+ 1 -t n. For consistency, the IRK

coefficients must satisfy constraints c1 =ix 1 and c2 =[321 +o_2, and the usual

presentation of (6.17) in the ODE literature is as the synoptic table

I c I oq 0
c a ,,' c2 [321 ix 2 (6.18)

The IRK algorithm coefficientsets contain flexibilityfor control of truncation error

and stabilityclassification.In the classicalsense, second-order accuracy accrues to the

constraints

b1 +b2=l and blot I +b2([_21 +ot2)=0.5 (6.19)

Additional desirable properties for the IRK algorithm to possess include the A-stability

of the 0=1 backwards Euler (which is only first-order accurate) and the classical second-

order accuracy of the 0=0.5 trapezoidal rule. For the IRK algorithm to be uniformly

second-order accurate for all At requires it to possess B-stability, the essence of which is

expressed as

p+I,foral,At _ (O, AI 1) (6.20)

where constants D and A/1 are independent of ODE system stiffness, and p is the order

of consistency. The IRK algorithm (6.17) is bounded on 1 < p < 2, and the sufficient

conditions for B-consistency of unit order are o_l > and 0t2 > 0. Additionally, for the B-

convergence concept of stiffness-independence of convergence rate to hold, the

necessary conditions are b 1 < 0 and b2 < 0, c.f., Iannelli (1991, Ch. 8). One IRK

coefficients satisfying all criteria is

O_1_3-_ Or3 =2_,_, _ bl _3-_

_2 - v- -
2 7 4

(6.21)
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For comparison to (6.18), the syn. optic table for the 0-implicit Euler ODE

! 01 0 0 algorithm is

c] A--I I (1-0) 0

] bT I (1-0) 0

The implementation of the IRK ODE algorithm, as replacement for the O-implicit

Euler algorithm (3.14), hence the Newton algorithm (3.17) involves only minor

modifications. The algebraic matrix statement (3.17) becomes two expressions

involving the IRK iterates {koL}p as

IFQ},P-IMJ{k,Ip÷ ÷ ÷o, }Pl
(6.22)

{FQ}P2 =[M]{k2 }P+ {RQltn + c2At'{Q}n + _2 lat{kl }P + (z2 at{k2 }PIt

The Newton jacobian (3.17a) similarly becomes the two expressions

-[Ml+ct at 3{RQ}

[1ac2]-[Ml÷_2a,_

{Q}n+0_iAt{kI}P

[Q}.*,2,_,{k,}P+_=_,{k2}P
(6.23)

The iterates {Skl}P*l and {Sk2}P+! are the solutions to (6.23)-(6.22, hence the time-

updated iterate for the discrete state variable at time tn+ 1 is

{n_ p+I ={Q}n + Ati_=oIbl {_kl }i+l +b2 {Sk2 }i+l 1_:Jn+l (6.24)

Comparing (3.17) and (6.22)-(6.24) confirms that twice the amount of computational

work is required to solve (3.15) using the IRK ODE algorithm. However, verification

and benchmark problems reported by Iannelli(1991) indicate that allowable (stable)

time steps At are also larger for IRK than for backwards Euler (0=1), and yield a

second-order accurate solution process devoid of the numerical diffusion associated

with using 0=1.

A non-iterative implementation of either algorithm is also possible, enforced by

constraining p=O. The first iterate becomes

{s_Q,}P+'={_IQ)}_nC3._7b_,o_{a;7÷'={a(k_)}
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for i=(1,2) in (6.24), and the IRK procedure (6.22) reduces to the two stage sequence

(6.25)

(6.26)

r,+r,iQ]n_/Q]n +_21At_Akl_r , is the intermediate state variable. The summation in
where

(6.24) vanishes, hence

{%+,-{%+ +b2 2})
isthe time-advanced discretestatevariable.

(6.27)

6.4 Equilibrium reacting air algorithm

As introduced in Section 2, long-term aerodynamics interest resides in inclusion of

real-gas effects, as occurs for example at hypersonic Mach number. The five species

generalization of the internal energy definition is (2.9), and (2.11)-(2.13) are five

algebraic constraint equations on species mass fraction Ya. Hence, (2.8)-(2.13)

represent seven equations on the seven variables p, T and Yct. The state variable

solution to (2.1)-(2.3) yields p, E and mi, hence u2 = mimi/p 2, and mass-specific internal

becomes available via (E+ p / p)- u 2 / 2 =cpT. Hence, from (2.9)

5 5 R0 v/M. 3
c T= _,Y.c .T+ Y Y. z z + y y.h 0 (6.28)

P i=l ' P' i=3 'exp(O v/T)-I i=l ' '

which decouples pressure from the solution strategy.

Next, since (2.12)-(2.13) are linear, they can be rearranged to the explicit expressions

Yl-({Xl0-Y4+Otl3Y3)=0
(6.29)

where the aij are functions only of the respective molecular masses. Insertion of (6.29)

into (2.11) then produces the companion expressions
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f 11:M K1:
"" "" ' 4pM5 II

(6.30)

Y4=t_lo÷_13Y3÷2.--_/-! .--h_/_lO÷_13y3
t" 4J _1-' 4 _ 4pM4/I

Hence, (6.29)-(6.30) depend only on Y3 and T, which yields a significant reduction in
work for a solution.

The final algebraic equation pair for solution is (Iannelli, 1991)

f K 3 / 1/2

"Y3-M3(Y4Y5M_5 J
.m 0

(6.31)

5 Y. 5 3 n 5"_5 ROv/M ifl "_e-RT 5". __L+ y Yc .T+ Y YhV -u 2 =0

where e=-E/p and u =mimi/p2. Hence, (6.31) is directly related to the discrete state

variable solution qh = (Q(tn)}, and to You 0c=1,2,4,5 via (6.29)-(6.30).

The solution of (6.31) is cast as the Newton algorithm

{F(Y,T)}=[fl2t={O } (6.32)

= {F} p (6.33)

The initial condition for starting (6.32)-(6.33) is the previous nodal solution (at time tn),

or the solution at the node adjacent to the current iteration. Since the jacobian in (6.33)

is only 2x2, an analytical expression for the inverse can be derived.

6.5 Tensor matrix product factorization

As mentioned, the FE TWS h algorithm (3.17) is a non-linear algebraic equation

system, for which the Newton jacobian (3.17a) is typically a large matrix for the choice

of an implicit time-integration procedure. A major focus in this project was to develop,

test and validate a tensor matrix product factorization (TP) quasi-Newton replacement

for implicit efficiency. The matrix factorization concept has roots in ADI and

approximate factorization (AF) finite difference methods, c.f., Beam and

Warming(1976).

The specific TP factorization for a FE WS h relies mathematically on existence of the

non-diagonal "mass matrix" [M] in the Newton jacobian. Referring to Baker &

Pepper(1991, Ch. 8) for details, and realizing that any (global) matrix is always the
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assembly of element-level contributions, then (5.12) is the basic departure point for a

linear algebra approximation, i.e.,

[JAC] e =[M]e +OAt oIRQ}e
(6.34)

Further realizing that the residual derivative contributions in (6.34) have a directional

character, via the flux vector resolutions, then a generic form for (6.34) is

[JAC]e =[M]e + 0At([V1]e +[V2]e +[V3]e +[D1]e

+[D2]e +[D3]e +[DBI] e +...) (6.35)

In (6.35), [Vile [D/]e and [DB/]e for 1 < I < d are the rl=space resolutions of the general

expressions for the convection, diffusion and IB-term artificial diffusion matrix

contributions, as discussed (and derived) in detail in Section 5.

For exposition, assume that the x i and rlj coordinate systems are parallel, i.e., f2 h is

rectangular cartesian. Then, the TP factorization of (6.35) is

[JACI]e--'[JAC1] e @[JAC2le @[JAC3]e (6.36)

where ® denotes the matrix tensor product, a matrix multiplication between a rank cx

and rank _B matrix producing a rank (0t+ _B) matrix. The TP matrix factorization

assumption is that each factor in (6.36) is of the form

[JACI]e =[Mile +0_t([VI]e +[Dlle +[DBI]e+.-.) (6.37)

for I an integer (1 .... d). Each of the matrices defined in (6.37) is assumed formed using

d=l FE bases, on one-dimensional domains, hence is of rank k+l. Referring to Table

5.2, the lead matrix in (6.36) in direction 1 is

[MI] e = dete[A200]_ l . ['2- LI (6.38)

where l 1 is the element length parallel to _1" The corresponding term parallel to 112 is
then

dete A200] t2r 2[M2]e= [ '= 6 L' (6.39)
and the 113 term form is obvious.

The matrix tensor product of (6.37)-(6.38) is

4212

[Mlie @[M2]e-7[1 2J a |l 2/- aa [1 2 4 2/- e[ ,I (6.40)

...... L2 124j

i.e., it is identical to the d=2 mass matrix given in Table 5.2. By direct extension, then

[M1]e ®[M2]e @[M3]e =dete[C200] (6.41)

72



hence the matrix tensor product operation can generate multi-dimensional matrices

from d=l forms. In fact, it is easy to verify in 11j space that

[M1]e ®[V2I e = ET22e[B202 ] (6.42)

since ET21e=0 for x i and rlj parallel. Thereby also, for example

[Mlle ®[M2] e ®[V3le = ET33e[C2031 (6.43)

and the remaining tensor products indeed produce multi-dimensional element matrices

from d=l constructions in 11j space.

Substituting (6.37) into (6.36), restricting to d=2, deleting [DBI] e for clarity and using

(6.38)-(6.42) as appropriate, yields

[JAC]e =[JAClle ®[JAC2]e

=[M1]e ®[M2]e +[M1]e ® 0At([V2]e +[D2]e )

+[M2]e ®0At(Iv1] e +[D1] e)

+(OAt)2 ([V1]e ®[V2]e +[D1]e ®[D2] e + ...)

=[M]e +0at(M e +[D]e)+(0at)2(error)) (6.44)

Therefore, the matrix tensor product of a sum of element matrices reconstructs the

matrices in the parent expression with the addition of a error term of order (0at) 2. This

error is the same order as the developed ODE methods, and is not of consequence if the

quasi-Newton algorithm is iterated to convergence. However, if the mesh is poor

enough, then this error term can adversely affect convergence (rate), hence also

iterative stability.

This discussion introduces the mechanics of the TP operation. The purpose is not

multi-dimensional element matrix construction, however, but rather to establish an

efficient quasi-Newton jacobian replacement for (3.17a), the assembly of (6.34). In

global terms then, (3.17a) is approximated as

[JAC]{SQ} =[JAC1}®[JAC2]®[JAC3]{_Q} p + 1 =_{FQ} p (6.45)
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For the definitions [JAC3] {SQ}p +1 _--{S} and [JAC2] ® [JAC3] {SQ}p +1 - {R}, then the TP

factorization quasi-Newton procedure is the d-step sequence

[JAC1]{R} = -{FQ}P

:jAc2j:s}=-{RT} (6.46)

:jAc,j{ ,o}=
The superscript "hat" emphasizes that the solution to (6.46) is only an approximation to

{SQ}P +1, and the intermediate data arrays {R} and {S} must be row-column exchanged

between generation and use, hence the (internal) superscript "T."

The linear algebra procedure (6.46) thus operates as a nodal string sweeping

procedure, using block-(2k+l) diagonal matrices to replace the large sparse Newton

jacobian (3.17a). Thus, an underlying assumption is existence of a lexicographic

ordering, such that data strings amenable to efficient handling exist. There is no

statement in the derivation that restricts this ordering to uniform, i.e., the domain f2

transforms to the "unit box." However, in this project as well as in efforts following, we

have not attempted to seriously explore other than simply ordered lexigographics. The

real attraction of (6.45), as a linear algebra procedure, is that well established avenues

to massive parallelism exist, which is the subject of ongoing research, c.f., Manning, et
al (1993).

To the specific issue of this project, the goal is to enable use of "arbitrary meshing"

which is interpreted as one exhibiting little (no) restriction on distortion in the field.

Specifically, a regular (rectangular cartesian) meshing is not admissible, hence the

derived TP algorithm (6.45) must be adapted to handle arbitrarily non-regular

meshings. Following considerable study (Iannelli, 1991), the required TP

generalization reduced to accurate metric data handling and elimination of the factor

det e on the [A200] mass matrix. For the latter, the Newton algorithm is recast to include

a multi-dimensional nodal det={DET} into the iteration variable, such that (3.16)
becomes

[JAC]{DETSQ} p+I =-{FQ} p (6.47)

[]A C]e . O{DETQ}e = O{DETQ}e
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which would involve numerous modifications to algorithm jacobian derivations in

Section 5.4. In practice, the formulation change is minimal via interior multiplication in

(6.47) by [I]=rDETJ-1 _'DET_J yielding

[JAC]rDET _1 rDET.I {SQJ= [JAC] rDET.] "1 {DETSQ} (6.49)

where rDET.J is diagonal matrix form of [DET}. Hence, each jacobian contribution in

Section 5.4 receives only a post multiplier ['DET.]e I, and upon solution of (6.47)

{sQ}p+l =[DET]- I{DET_).} (6.50)

The second key ingredient for TP factorization to function accurately on

arbitrarily nonregular meshings is to replace elementary length scales with the full

multi-dimensional metric data distributions, recall (5.21). Iannelli(1991, pg. 207-280)

exhaustively examines this issue, hence derives the functional forms for the TP

jacobians [JACI]e. The implementation employs the developed metric tensor data base

TIJe in concert with [A...] element matrices and the array of inverse nodal determinant

as the diagonal matrix post-multiplication given in (6.49) at the element level. For

example, (5.59) defines the self-coupled Newton jacobian total energy E contribution

from the residual in compact form as

IRE.El,.-lullrImolo],  ) ullT[molole
+ (_e_C [IVI2KK]e rOSRH je T (6.51)+_EOKe(UIle [M3OKJ]e

The expanded form for this jacobian, including the mass matrix term, boundary

conditions, and all metric data detail is presented in Fig. 6.1, as excerpted from

Appendix A, the d=2 AKCESS.AERO template equivalent of (6.51) with [M]e from

(5.12). The entries are grouped by contributions as: (1 1) is the time term

[M]e=DETe[B200]; (2 1) is (6.51) with GMI=(_I) and ZPEC and HBM are scalar

switches; (3 1) is the inflow BC set with switch PHBI; (4 1) is the companion outflow BC

set with switch PHBO. The bracket distribution of data is defined in (5.31), and recall

the group preceding a master matrix (B...) contains the metric data distribution and det e

exponent. Empty brackets remain interpreted as unity, except in the final location

which is the identity diagonal matrix.
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JACOBIANS

ETOT ETOT 1 1 T

() () () (;1) (B200) ()
ETOT ETOT 2 1 T

+(-) () (UI+U2) (102;0) (83010) ()+(-) () (UI+U2) (304;0) (B3020) ()

+(-GMI) () (Ul+U2) (102;0) (B3010) ()

+(-GMI) () (UI+U2) (304;0) (B3020) ()
+(ZPEC,PEI) () () (1122;-1) (8211) ()+(ZPEC,PEI) () () (3344;-1) (8222) ()

÷(ZPEC,PEI) () () (1324;-1) (8221) ()+(ZPEC,PEI) () () (1324;-1) (B212) ()

+ (HBM) () (UMAG,HBI) (i122;-i) (B3011) ()+(HBM) () (UMAG,HBI) (3344;-1) (B3022) ()
÷(HBM) () (UMAG,HBI) (1324;-I) (83012) ()+(HBM) () (UMAG,HBI) (1324;-i) (B3021) ()

ETOT ETOT 3 1 T

() () (Ul+U2) (102;0) (83010) ()+() () (Ul+U2) (102;0) (B31PI) ()

+(GMI) () (UI+U2) (102;0) (83010) ()+(GMI) () (UI+U2) (102;0) (B31Pl) ()

+() () (UI+U2) (304;0) (83020) ()+() () (UI+U2) (304;0) (832P2) ()

+(GMI) () (UI+U2) (304;0) (B3020) ()+(GMI) () (Ul+U2) (304;0) (B32P2) ()

+(PHBI) () (UMAG,HBI) (1122;-1) (B3011) ()

+ (PHBI) () (UMAG,HBI) (3344;-1) (83022) ()

+ (PHBI) () (UMAG,HBI) (1324;-1) (B3012) ()

+(PHBI) () (UMAG,HBI) (1324;-1) (83021) ()
ETOT ETOT 4 1 T

() () (UI+U2) (102;0) (B3010) ()+() () (UI+U2) (102;0) (B31PI) ()

+ (GMI) () (UI+U2) (102;0) (83010) ()+(GMI) () (UI+U2) (102;0) (B31Pl) ()

+() () (UI+U2) (304;0) (83020) ()+() () (UI+U2) (304;0) (832P2) ()

+(GMI) () (UI+U2) (304;0) (B3020) ()+(GMI) () (Ul+U2) (304;0) (B32P2) ()

+ (PHBO) () (UMAG,HBI) (1122;-1) (83011) ()
+(PHBO) () (UMAG,HBI) (3344;-1) (83022) ()

+(PHBO) () (UMAG,HBI) (1324;-1) (83012) ()

+ (PHBO) () (UMAG,HBI) (1324;-1) (83021) ()

Figure 6.1 AKCESS.AERO REMI template jacobian [RE,E]e, d=2.

Figure 6.2 contains the comparison AKCESS.AERO template instruction set for the

TP factorized quasi-Newton jacobian for d=2 problems. Hence, there are two jacobians

defined, and each contain the four cited groupings. Comparing Fig. 6.2 to Fig. 6.1, in

the first group (1 1) note that (A200) is post multiplied by DETJ, the diagonal matrix of

(1/DET)nod e. In the preceding bracket, the "O" following the semi-colon is the

exponent on DET e, replacing the (; 1) in Fig. 6.1. In Fig. 6.2, the first line in group (2 1)

is the convection term, and therein (102;0) preceding (A3010) denotes a d-dimensional

(ET11+ET21)e multiplication to establish the contravariant velocity resolution parallel to

the 111 direction. Skipping down to the second factored jacobian, these metric data

become (304;0) for the q2-direction contravariant component.

The other data in Fig. 6.2 or Fig. 6.1 are clearly "readable," once the syntax and

notational structure are understood. Hence, the template construct for TWS h FE

algorithms via AKCESS., provides a precise definition for every nuance of an algorithm.

Appendix C contains the AKCESS.AERO template for the complete d=2 TP quasi-

Newton jacobian construction.
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JACOBIANS

#
# FACTORED JACOBIAN FOR DIRECTION 1 #

#
ETOT ETOT 1 1 #

() () () (;0) (A200) (DETJ)
ETOT ETOT 2 1 #

(-) () (u1+u2) (102;0) (A3010) ()
+(-GMI) () (UI+U2) (102;0) (A3010) ()

÷(PDUM2,PEI) () () (1122;-1) (A211) ()

+ (HBM) (UI,UMGB) (UI) (ii;-0.5) (A3011) ()

+(HBM) (U2,UMGB) (U2) (22;-0.5) (A3011) ()
ETOT ETOT 3 1 #

() () (UI+U2) (102;0) (A3010) ()+() () (UI+U2) (102;0) (A31PI) ()

+(GMI) () (UI+U2) (102;0) (A3010) ()+(GMI) () (UI+U2) (102;0) (A31PI) ()

+(PHBI) (UI,UMGB) (Ul) (11;-0.5) (A3011) ()

+(PHBI) (U2,UMGB) (U2) (22;-0.5) (A3011) ()
ETOT ETOT 4 1 #

_) () (UI+U2) (102;0) (A3010) ()+() () (UI+U2) (102;0) (A31Pl) ()
+(GMI) () (UI+U2) (102;0) (A3010) ()+(GMI) () (UI+U2) (102;0) (A31Pl) ()

+ (PHBO) (UI,UMGB) (UI) (11;-0.5) (A3011) ()

+ (PHBO) (U2,UMGB) (U2) (22;-0.5) (A3011) ()
#

# FACTORED JACOBIAN FOR DIRECTION 2 #
#

ETOT ETOT 1 2 #

() () () (;0) (A200) (DETJ)
ETOT ETOT 2 2 #

(-) () (Ul+U2) (304;0) (A3010) ()

+ (-GMI) () (UI+U2) (304;0) (A3010) ()

+(PDUM2,PEI) () () (3344;-1) (A211) ()

+ (HBM) (UI,UMGB) (UI) (33;-0.5) (A3011) ()
+(HBM) (U2,UMGB) (U2) (44;-0.5) (A3011) ()

ETOT ETOT 3 2 #

() () (UI+U2) (304;0) (A3010) ()+() () (UI+U2) (304;0) (A31Pl) ()

+(GMI) () (UI+U2) (304;0) (A3010) ()+(GMI) () (UI+U2) (304;0) (A31PI) ()

+(PHBI) (UI,UMGB) (Ul) (33;-0.5) (A3011) ()

+(PHBI) (U2,UMGB) (U2) (44;-0.5) (A3011) ()
ETOT ETOT 4 2 #

() () (UI+U2) (304;0) (A3010) ()+() () (UI+U2) (304;0) (A31PI) ()

+(GMI) () (UI+U2) (304;0) (A3010) ()+(GMI) () (UI+U2) (304;0) (A31Pl) ()
+(PHBO) (UI,UMGB) (UI) (33;-0.5) (A3011) ()

+ (PHBO) (U2,UMGB) (U2) (44;-0.5) (A3011) ()

Figure 6.2 AKCESS.AERO REMI template, TP jacobian [RE,ETP], d=2

6.6 Summary

This section has established several auxiliary procedures applicable to the TWS h

REMI CFD algorithm. The matrix tensor product quasi-Newton approximation for

linear algebra efficiency is derived and clearly established as an AKCESS., template.

This completes derivation and definition of the TWS h aerodynamics CFD algorithm.
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7. DISCUSSION AND RESULTS

7.1 Synopsis

During the specified performance period of this contract, only rudimentary

verification-type computational results were accomplished, due mainly to a primitive

code base. During the subsequent two years of formal extension, AKCESS., began to

function in parallel with dissertation project development of the FEMNAS code

(Iannelli, 1991). The intervening period has seen maturation of AKCESS.,, which has

finally provided the software platform to critically assess TWS h algorithm issues that

were "hard-wired" one way in the FEMNAS code. This section discusses verification,

benchmark and validation computational experiment results for the developed REMI

FE CFD theory for aerodynamics applications.

7.2 Subsonic inviscid verifications, d=2,3

The emergence of AKCESS.AERO has finally provided the platform to critically

assess TWS h algorithm issues of stability, mesh non-uniformity and Newton versus

tensor product (TP) quasi-Newton matrix solution methods. The verification problem

is shock-free subsonic internal flow in a duct of varying cross-section. Figure 7.1

graphs a 2:1 area ratio duct for d=2, and the companion 4:1 area ratio d=3 duct. For d=2,

a range of highly non-uniform meshings are employed to assess "mesh arbitrariness,"

while for d=3 the transformation of hexahedra to a circular cross-section introduces

large mesh skewing at the 45 ° rays as illustrated.

Prior to the REMI state variable IC process, verification problems required about a

hundred iterations to self-generate a tangency-adequate solution field. With the ]C

algorithm, Section 6.2, the REMI solution process proceeds immediately. Three

distinct AKCESS., templates for the d=2 IC algorithm are developed, differing by

distributed nodal {RHO}e vs. element-average RHOe, template-discernible by the

bracket where Pe appears, and the use of [B30JK] hyper matrices in the former, Fig.

7.2a). This template also uses element-average metric data, since no suffix "E" appears

in the FE matrix name. Conversely, Fig. 7.2b) is the d=2 Gauss-quadrature template,

distinguished by the element matrices [B2JKE], with the last integer in the metric data

string ("003" in this case) the symmetric order (P=Q) of the quadrature rule, recall

(5.17). Finally, the d=3 Gauss quadrature template is listed in Fig. 7.3, distinguished by

the element matrix prefix "C" and P=3=Q.

A mesh distortion sensitivity study is performed for the d=2 case via gross

displacement of select nodes of the macro mesh, i.e., the coarsest mesh that defines the
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Figure 7.1 Converging subsonic duct verification, a) d=2, 2:1 area ratio,

b) d=3, 4:1 area ratio.
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TITLE **TEMPLATE FILE TEMP.B30KJ****
REMI.IC 2D, NODAL RHO, DELSQ PHI (1/04/94)

RESIDUALS

PHI 2 T VARBL, SET NO., --- SPATIAL SET (PHI)

()()(RHO)(1122;-1)(83011)(PHI)+()()(RHO)(3344;.I)(B3022)(PHI)

+()()(RHO)(2413;-1)(B3021)(PHI)+()()(RHO)(1324;.I)(B3012)(PHI)

PHI 4 T VARBL, SET NO., --- BOUNDARY SET (PHI)
()()()(;1)(A200)(UJNJ)

a)

JACOBIANS

PHI PHI 2 1 T VARBL, VARDIF, SET, NEWTON

()()(RHO)(1122;-1)(83011)()+()()(RHO)(3344;.1)(B3022)()

+()()(RHO)(2413;-I )(B3021)()+()()(RHO)(1324;.1)(B3012)()

TITLE *** TEMPLATE TEMP.B30KJ ***
2D WS VELOCITY CALCULATION (1/04/94)

RESIDUALS

UI 2 T VARBL,

()()()(1;O)(B201)(PHI)

+ ()() ()(3;0)(B202) (PHI)

U2 2 T VARBL,

()()()(2;0)(B20I)(PHI)

+()()()(4;0)(B202)(PHI)

SET NO., --- DATA SET (U1)

SET NO., --- DATA SET (U2)

JACOBIANS

U1 U1 2 1 T VARBL, VARDIF, SET NO. JACOBIAN (UI)
()()()(O;I)(B200)()

U2 U2 2 1 T VARBL, VARDIF, SET NO, JACOBIAN (U2)
()()()(O;I)(B200)()

TITLE *** TEMPLATE FILE TEMP.B2KJE ***
REMI.IC 2D, AVE. RHO, DELSQ PHI SOLVE (1/04/94)

RESIDUALS

PHI 2 T VARBL, SET NO, SPATIAL SET (PHI)

()(RHO)()(I 122003;-1)(B211E)(PHI)+()(RHO)()(3344003;. 1)(B222 E)(PHi)

* ()(RHO)()(2413003;- I)(B221E)(PHI)+()(RHO)()(1324003;-I )(B212E)(PHI)

PHI 4 T VARBL, SET NO., --- BOUNDARY SET (PHI)

()()()(;I)(A200)(UJNJ}

b}

JACOBIANS

PHI PHI 2 1 T VARBL, VARDIF, SET, NEWTON

()(RHO)()(1122003;-1 }(B211E}(}÷()(RHO)()(3344003;-I)(B222E)()

÷(}(RHO)(}(2413003;-1)(B22 IE)()÷(}(RHO)()(1324003;.I)(B212E)()

TITLE *** TEMPLATE TEMP.B2KJE -**
2D WS VELOCITY CALCULATION (1104194)

RESIDUALS

UI 2 T VARBL, SET NO., --- DATA SET (UI}

()()()(I 000003;0)(B201E)(PHI)

÷ ()()()(3000003;0)(B202E)fPHI)

U2 2 T VARBL, SET NO., --- DATA SET (U2)

()()()(2000003;0)(B201E)(PHI)

+()()()(4000003;0)(B202E)(PHI}

JACOBIANS

U1 UI 2 I T VARBL, VARDIF, SET NO., JACOBIAN (UI)

()()()(0000003;1)(B200E)()

U2 U2 2 I T VARBL, VARDIF, SET NO., JACOBIAN (U2)

()()()(0000003;I)(B2OOE)()

Figure 7.2 AKCESS.* template for REMI d=2 IC generation, a) nodal density,

element-averaged metric data b) average density, Gauss quadrature element matrices.
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TITLE **** TEMPLATE FILE TEMP.C2KJE ****

REMI.IC 3D, AVG. RHO, DELSQ PHI (1/06/94)

RESIDUALS

PHI 2 T VARBL, SET NO., --- SPATIAL SET (PHI)

() ()(RHO)(1122333;- l )(C2I 1 E)(PHI)+()() (RHO)(4455663;-|)(C222E)(PHI)

+()()(RHO)(7788993;-1)(C233E)(PHI)+()()(RHO)(1425363;.] )(C212E)(PHI)

+()()(RHO)(1425363;- ])(C221E)(PHI)+()()(RHO)(1728393;. ] )(C213E)(PHI)

+()()(RHO)(1728393;-1)(C231E)(PHI)+()()(RHO)(4758693;. 1 )(C223E)(PHI)

+()()(RHO)(4758693;- l)(C232E)(PHI)

PHI 4 T VARBL, SET NO.,--- BOUNDARY SET (PHI)

()()()(;1)(B200)(UJNJ)

JACOBIANS

PHI PHI 2 1 T VARBL, VARDIF, SET NO., JACOBIAN (PHI)

()()(RHO)(1122333;- ] )(C21 I E)()+ () () (RHO) (4455663;- 1 )(C222E)()

+()()(RHO)(7788993;-1 )(C233 E)()+()()(RHO)(1425363;.1 )(C2 I 2E)()

+()()(RHO)(]425363;-1)(C22]E)().()()(RHO)(1728393;.1)(C213E)()

+()()(RHO)(1728393;- I )(C231E)()+ ()()(RHO)(4758693;.I)(C223E)()

+()()(RHO)(4758693;- 1 )(C232E)()

TITLE
**** TEMPLATE TEMP.C2KJE ****

3DWS VELOCITY CALCULATION (1/06/94)

RESIDUALS

Ul 2 # VARBL, SET NO., ---

()()()(1000003;O)(C201E)(PHI)

÷()()()(4000003;0)(C202E)(PHi)

÷ ()()()(7000003;0)(C203E) (PHI)

DATA SET (UI)

U2 2 T VARBL. SET NO., -..

()()()(2000003;0)(C20l E)(PHI)

÷ ()()()[5000003;0)(C202E)(PHI)

÷()()()(8000003;O)(C203E)(PHI)

DATA SET (U2)

U3 2 T VARBL. SET NO., ---

()()()(3000003;0)(C201E)(PHI)

+ () ()() (6000003:0)(C202 E)(PHI)

+ () ()() (9000003;0)(C203 E)(PHI)

DATA SET (U3)

JACOBIANS

U] UI 2 l T VARBL,

()()()(o;;)(C2OO)()

VARDIF, SET NO., JACOBIAN (U])

U2 U2 2 ] T VARBL, VARDIF, SET NO.. JACOBIAN (U2)

()()()(0;I)(C200)()

U3 U3 2 l T VARBL, VARDIF, SET NO., JACOBIAN (U3)

()()()(0;I)(C200)()

Figure 7.3 AKCESS.. template for REMI d=3 IC generation, averaged

density, Gauss quadrature element matrices.
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geometric essenceand admits local meshadaptation/refinement asneeded. Figure 7.4

shows two levels of mesh distortion, accomplished by a "click and drag" of two macro

vertex nodes, an on-screen, real-time interactive operation. The more distorted mesh

possesses nearly singular elements, i.e., ones having an interior angle approximating

180 °, yielding a near-triangle, in the interior and near the adverse geometric

singularity. To help maintain solution accuracy, the distorted mesh B transverse

refinement is double that of mesh A.

Figure 7.5 graphs the IC algorithm converged solutions, for inlet Mach number

Ma -___0.2, as density distribution with velocity vector field and mesh superimposed

using, a)-b) the nodal density, averaged-metric template, and c)-d) the averaged-

density, Gauss quadrature template. It is very apparent that averaging metric data on

highly distorted meshes is a serious interpolation-error "crime" for subsonic flows (at

least). Local departure from density isoclines being nearly vertical lines occurs on both

meshings, although velocity vector departures from essential tangency is quite

minimal, which verifies robustness for the weak statement algorithm for velocity, recall

(6.9). Timing comparisons verify the Gauss quadrature template requires about twice

the cpu time to execute, but for this simple case the difference is seconds.

The state variable thus generated serves to initialize a REMI Euler equation

solution, generated using the scalar _ dissipation formulation, c.f. (4.24). Full

"upwinding" corresponds to 13=1.0, and using _=0.3, the TP REMI algorithm (Appendix

C) converged to nominal steady-state, from either IC data set on the respective

meshings, in 100"__ time steps. Figure 7.6 graphs comparative solutions obtained on

mesh B for pressure, with velocity vectors and mesh overlaid, for varying [5.

Conclusions drawn from these data include:

• smooth

• for the

shocks)

averaged-metric data for REMI for Euler simulations on quite

distorted meshings is admissible

the TP quasi-Newton factorization is convergent on highly distorted
meshes using multi-dimensional metric data

state variable IC data is not necessary for an Euler solution.

_range tested, the Euler solution for smooth flows (no

appears relatively unaffected, except near the inflow plane

For the scalar TWS h dissipation form, decreasing _ to 0.10 resulted in solution

process divergence on mesh B and marginal instability on the less distorted mesh A.

With either smooth or non-smooth IC data, a few dozen TP time steps at _=0.3 readily

stablizes an Euler solution, at which point _ can be progressively decreased to a
minimum level.
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Figure 7.4 Converging duct validation check case, d=2, a) modestly non-

cartesian mesh A, b) highly distorted mesh, B.
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A sensitive measure of error induced by artificial diffusion is loss of total pressure

PT" The non-D definition is

PT=l+yMa2r(mimi/P) (7.1)

and for inviscid adiabatic duct flow case, PT should remain nominally equal to the

(non-D) stagnation pressure intrinsic to the IC generation process. Figure 7.7 graphs

the distribution of PT for the REMI TP Euler solutions on mesh B for scalar 13=0.3 and

0.2. The IC generated level is 1.028, which both solutions exhibit everywhere except at

locations of mesh coarseness and following the adverse geometric singularity. The

lower level of scalar 13yields a corresponding smaller PT loss along outflow wails, as

observed by the narrower dark band in the graph.

An Euler solution on distorted mesh B was also executed using the d=2 full Newton

jacobian REM/template, Appendix A. The allowable At for iterative convergence was a

factor of about five larger than for the TP algorithm, however the cpu execution time

for Newton and TP quasi-Newton was nominally identical. This relates principally to

the minimal memory/storage demands for the TP formulation, executed with a Gauss-

elimination block-tri-diagonal solver. The full Newton template was solved using the

GMRES sparse solver with an incomplete-LU preconditioner, cf., WiUiams(1993).

AKCESS.AERO provides these options, with preconditioner variations, as a template

instruction under "SOLUTION TYPE."

The d=3 REMI Newton template is an unattractive option, hence is not constructed.

The d=3 TP quasi-Newton jacobian template is given in Appendix D. No artificial

internal mesh distortion for IC debug was made, hence sensitivity relates to the

relatively poor mesh aspect ratios adjacent to the walls, recall Fig. 7.1. The IC solution

generated by the template of Fig. 7.3 is shown in Fig. 7.8a) as density isoclines, which

clearly indicates distorted mesh-induced error bands at the four quadrants. However,

for scalar 13=0.3, the Mach number distributions clearly shows that these IC data errors

are annihilated in the Euler solution process, Fig. 7.8b) The exit Mach number

distribution does exhibit a modest (2%) variation, however all velocity vectors are

dearly normal to the exit plane.

7.3 Transonic inviscid verifications, benchmarks, d=2

The principal purpose of transonic verifications and benchmarks is to assess the

shock capturing performance of the FE TW$ h Euler algorithm. A verification problem

(with known analytical solution) is flow in a de Lava] nozzle, a converging-diverging
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Figure 7.7 Total pressure loss error for REMI Euler solutions, converging

duct, Main -_ 0.2, scalar 13, d=2, mesh B, d=2, a) 13=0.3, b) 13=0.2.
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overlay, scalar 13=0.3.

9O



cross-sectionduct. The flow is axi-symmetric, quasi-one dimensional with governing

conservation law form as given in (2.1)-(2.6), with state variable q={p,m,E} T and with

source term array s= -md(lnA)/dx,- m2/o d(lnA)/dx,-(E+p)d(lnA)/dx , where

A=A(x) is the nozzle cross-sectional area distribution. The FEMNAS code generated

REMI comparative solutions, with e-Euler and IRK ODE procedures, for the deLaval

nozzle geometry of Liou and vanLeer(1988), Fig. 7.9a). The desired inlet Mach number

is Main =0.24, and Pout/Po = 0.84 yields off-design operation with a normal shock

located at x/L=0.65 with shock Mach number Mas=l.40. Figure 7.9b) shows the

computed steady-state momentum distribution on a uniform 100 element meshing.

The TWS h dissipation parameter set was 13q=0.16 {1,1,1} T, i.e., uniform for each state

variable member. The shock is clearly located at x _ 0.67 by the discrete approximation

to the Rankine-Hugoniot shock relation.

fir"" nocla I mesh

) L

a) uouc.,uu b)
O.gO
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Figure 7.9 deLaval nozzle verification problem, a) cross-section distributions,

b) steady REMI nodal solution for axial momentum.

Figure 7.10 graphs the unsteady sequence of Mach number distributions computed

via REML using the non-iterative IRK ODE algorithm (6.25)-(6.27) at uniform time step

At=0.005, which yields CFLma x = 35, where CFL=uAt/Ax. From the initial condition, an

expansion wave immediately forms, a), hence moves upstream through the throat, b)-

c). Then, the flow downstream of the throat accelerates supersonic, d)-e), to steady-

state, f). The resultant shock is absolutely monotone, spread across two FE domains

with shock Mach number Mas=l.4, in excellent agreement with the analytical solution.

Iannelli(1991, Ch. 10.1) details comparative performance for the IRK, the trapezoidal
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rule (e=0.5) and the backwards Euler (e=l.0) ODE algorithms, for unsteady, time-

accurate performance in this geometry. The IRK algorithm exhibited uniformly

superior performance for this set of experiments.
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Figure 7.10 deLaval nozzle, unsteady REMI TWS h solution for Mach number, IRK

ODE algorithm, At= 0.005, a)t =0.4, b) t= 1_0, c) t= 1.2, d) d= 1.8, e) t = 2.8.
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The d=2 benchmark problem is transonic flow over a 15% thick parabolic arc

"airfoil" in a channel. The quasi-one dimensional Euler solution yields a normal shock

with Mas=l.4 , while the d=2 Euler solution predicts a dosed supersonic pocket with

shock Mach number Mas=l.5 , Johnson(1982). Fig. 7.11a) graphs the essential geometry,

solution domain, and a nominally uniform 65x35 quad element mesh containing 2376

nodes with modest attractions to the lower wall. The Dirichlet inflow BC are p,m 2 and

E fixed, the sole fixed BC at outflow is P/Pr =0.68, for which the inlet flow Mach

number should approach Main=0.68 at steady-state. The top and bottom boundaries

are tangent flow with vanishing normal derivatives implied, and the IC was generated

via a quasi-one dimensional interpolation procedure.

The steady-state REMI FE TWS h algorithm solution via FEMNAS is summarized in

Fig. 7.11-7.12. Figure 7.11b)-d) graphs the steady velocity vector, entropy and Mach

number fields; the shock is observed to lie very close to the arc trailing edge, and the

Rankine-Hugoniot jump condition is observable in the principal momentum graph, Fig.

7.11e). Fig. 7.12 contains surface perspective and planar isocline presentations for

momentum resolution, pressure and Mach number. The shock and Rankine-Hugoniot

phenomena are clearly visible, with the shock spread across three elements on the

bump surface and Mas=l.53 , which agrees with Johnson to within 2%. All state

variable fields intersect the far-field boundaries in a non-oscillatory manner via the

WS h implied vanishing normal derivative. The impact of relatively coarse mesh at the

leading edge is visible as a local oscillation in the transverse momentum graph;

otherwise, the REMI solution is globally essentially non-oscillatory (ENO).

7.4 Supersonic inviscid verification, d=2

A classic Euler supersonic d=2 verification is flow over a planar wedge with

comparison conical analytical solution, cf., Anderson(1982). Figure 7.13a) graphs a

uniform 65x35 quad element mesh for wedge angle ct=20 o. For onset flow at Main

=3.0, an oblique shock should form at shock angle _=38 o, and downstream thereof the

flow Mach number is uniform at Maou t =2.0. The entire flowfield is thereby

supersonic, hence all state variables are fixed at inflow, and no Dirichlet data is

admissible elsewhere. Flow tangency occurs on the stagnation streamline and the

wedge surface, and the simulation data should exit smoothly, everywhere downstream

of the shock without oscillation. The IC is uniform onset flow interpolated to tangency

on the wedge.

This verification test validates the use of FE solution-adaptive remeshing to

improve resolution of the oblique shock. Three solution-adapted discretizations were
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Figure 7.11 REMI algorithm TWS h Euler solution, steady-state, 15%

parabolic arc, scalar _=0.2 {1_T a) 65x35 mesh, b) velocity
vector field, c) entropy, d) Mach number, e) axial momentum.
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b)

a)

c)

d)

'igure 7.12 REMI algorithm TWS h Euler solution, steady-state, 15% parabolic arc,

Main = 0.68, scalar _=0.2 {1}T, perspective and contour graphs of, a) axial

momentum, b) transverse momentum, c) Mach number, d) pressure.
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i J

b)

d)

Figure 7.13 REMI algorithm TWS h Euler solution, supersonic wedge flow,

0 = 20 °, 13 = 0.3 {1}T, a) initial 65x35 uniform mesh, b) density

isoclines, c) I st adapted mesh, d) resultant density isoclines.

96



block-constructed from the base 2x2 macro mesh, each computational mesh contained

65x35 elements. The IRK ODE algorithm was used throughout in non-iterative mode.

For the initial sheared uniform body-fitted mesh, Fig. 7.13a), the Euler solution density

distribution obtained after 20 time steps, with CFLma x ~ 10 is graphed in Fig. 7.13b).

This REMI solution is monotone but only "resembles" the analytical steady-state due to

gross diffusion for scalar TWS h _=0.3. These REM/ data were interpolated to the

solution-adapted mesh with shock region refinement, Fig. 7.13c). Following 40

additional time steps with CFLmax-100 the REMI density field resolution is much

sharper, Figure 7.13d). This isodensity graph is devoid of isolated closed contours, a

firm indication of a quality ENO solution.

Figure 7.14a) graphs the second solution-adapted mesh, with maximal clustering

along the shock and wedge, yielding very large mesh aspect ratio distortions. The

resultant TwSh-produced ODE system becomes extremely stiff, yet the IRK algorithm

converged to a steady-state in six more time steps to I_qlma x < 10-6. CFLma x

increased to 150 on this mesh, and the resultant density distribution confirms a crisp

ENO shock simulation, Fig. 7.14b). Perspective graphs of Mach number and pressure

with contours confirm the captured shock quality, Fig. 7.14c)-d). The arrow with label

M_ shows onset flow direction, and the discrete discontinuity is correctly a straight

line (plane) inclined at the analytical solution angle to three significant digits. The

shock is absolutely free of precursor under-or over-shoots, and the overall TWS h

solution field is oscillation-free (ENO), including the stagnation streamline and where

tangency accrues via weak enforcement (only). Clearly, use of highly non-orthogonal

distorted FE meshings is fully admissible for Euler solutions within the TWS h

algorithm with TP quasi-Newton jacobian constructions. Further, block solution-

adaptation is verified as a viable methodology, eligible for automation with

appropriate error detection schemes.

An extension on this validation, leading to a viscous verification, is supersonic flow

in a converging duct formed by an inclined "splitter plate" above a horizontal surface.

For onset flow at Ma_=2.15, and splitter plate angled at (_=-4 o, the entire flow remains

supersonic, hence BC-IC procedures are unchanged from the previous example. Figure

7.15 summarizes the REM/algorithm solution-adaptive re-meshing sequence leading to

sharp shock prediction at the plate, nominal resolution of shock reflection off the floor,

and undistorted passage of the reflected shock out the upper boundary.

These results, obtained with the scalar _ TWS h formulation in FEMNAS, are ENO.

The sole detraction is apparent longitudinal false diffusion in the shock-floor

impingement region. A local mesh attraction would correct this, however FEMNAS
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--_ b)

c)

Figure 7.14

d)

REMI algorithm TWS h Euler solution, supersonic wedge flow,

0=20 o, _ = 0.3 {1}T, a) final adapted mesh, b) density isoclines;

contour and perspective graphs, c) Mach number, d) pressure.
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a)

Figure 7.15 REMI algorithm TWS h Euler solution, supersomc shock

reflection, _ = 0.3 {1}T solution-adapted 65x35 meshing,

resultant density isocline distributions.
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did not possess this ability in its mesh generator. Figure 7.16 presents contour and

perspective surface distributions of pressure and entropy for this REMI algorithm

solution on the final mesh. A very good approximation to the conical flow analytical

solution is exhibited, and the entropy graph confirms sharp creation fronts at both

shocks, and a wall layer region downstream of the shock reflection.

7.5 Hypersonic Euler verification, validation, d=2 axisymmetric

The REMI FE TWS h algorithm is verified for inviscid hypersonic flow over a

spherical forebody, Iannelli (1991, Ch. 10), using FEMNAS. Figure 7.17a) presents the

final solution-adapted 65x35 quad meshing for the blunt body flow at Ma_=6.5, and

the corresponding steady-state density isocline distribution is ENO, Fig. 7.17b). The

transverse (body-normal) scale of these plots is highly stretched for clarity, hence the

shock appears much more diffused that in actuality.

Attaching a 7o/10 ° bicone to the hemispherical nose, and for Ma_ = 8.0, Fig. 7.17c)-

d) present adapted-mesh contour and perspective distributions for REMI Mach number

and density. The scalar TWS h dissipation parameter is _3q =0.4{1} T, which yields ENO

solutions with sharp resolution of shock and forebody flow detail. In Fig. 7.17c), the

letters denote stagnation point (C), sphere-cone juncture (D) and bicone juncture (E) in

the perspective view. (Again, the transverse plot coordinate is highly stretched for

viewing clarity.) With the I]KK algorithm, the solution process was stable to CFLma x -

200, and predicted steady-state bow shock standoff of 8/R=0.135 agrees within 4% with

available data, Anderson(1989), where R is hemisphere radius.

This Mare=8 test case affords a benchmark for validating the developed five-

species equilibrium reacting air thermodynamics model, Section 2. For the typical

wind tunnel attainable stagnation state, no appreciable real-gas effects are generated

for this problem. Conversely, for the representative at-altitude condition of p_ =0.03

arm and T._=221OK, the bow shock temperature rise will induce substantial real gas

effects. The comparison inviscid real gas simulation was also stable for CFLma x = 200.

Real gas effects lead to a decrease in normalized bow shock standoff to 8/R=0.11,

which is 18% smaller than the ideal gas prediction. This is expected since the real gas

temperature increase across the bow shock is substantially smaller. Figure 7.18

compares stagnation streamline temperature distributions for the real-gas and ideal-gas

Euler simulations. The relative shock temperature decrease is accountable to energy

absorbed by dissociation and vibrational modes, and eventual formation of nitric oxide

and atomic oxygen, Fig. 7.18b).
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a_

b)

Figure 7.16 REMI algorithm TWS h Euler solutions, supersonic shock

reflection, _a = 0.3 {1}T, final mesh, contour and perspective

graphs, a) pressure, b) entropy.
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a)

c) d)

Figure 7.17 REMI algorithm TWS h steady state Euler solutions, hypersonic

blunt-body flow adapted 65x35 quad meshes, Ma_=6.5, a) mesh,

b) density distribution; Maw = 8.0, contour and perspective surface

distributions of c) Mach number, d) density.
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Figure 7.18 REMI algorithm TWS h Euler solution, steady-state, Mayo=8,

a) ideal-air and real-air stagnation streamline/body

surface distributions of temperature,

b) companion real-air species mass fractions
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7.6 Viscous transonic benchmark, validation, d=2

The goal is to validate REMI Navier-Stokes algorithm (NS) solutions at practical

aerodynamics Reynolds numbers. The associated requirement is use of highly refined

meshings adjacent to surfaces, which yields very large mesh element aspect ratios,

hence ODE system stiffness. One NS benchmark test is a laminar viscous simulation of

the parabolic arc Euler benchmark geometry, Fig. 7.11a), with the thickness reduced to

4% such that the Euler solution is shock-free. The resulting FEMNAS 65x45 sheared

cartesian meshing is graphed in Fig. 7.19a), which is a 3-block macro construction with

non-uniformity generated by geometric progression.

For Reynolds number Re=4.0xl06, the progression factor was set such that element

vertical span adjacent to the airfoil surface was order Re -1. The intention was that

TWS h _dissipation not dominate near-wall phenomena, recall the stability analysis

(5.48)-(4.51). The exterior flow remains subsonic, hence inflow Dirichlet BC are applied

to p, m2, and E, pressure is fixed on the outflow plane, and the top boundary is flow

tangency with vanishing normal derivatives for all variables. Flow tangency with

vanishing normal derivative is applied to the bottom boundary everywhere except on

the airfoil surface, where m 1 --. 0 ,= m 2 for no-slip. The IC was interpolated quasi-one

dimensional Euler analytical solution, follow by switch to no-slip at Re=103, hence

Reynolds number continuation from Re=103 to 4.0x106.

Figure 7.19b graphs the principal momentum solution established following -800

time steps at Re=4.0xl06 using the IRK algorithm in non-iterative mode. The scalar

TWS h dissipation level was uniform at _q=O.2[l}T, CFLma x _ 100 was achieved, the L2

norm of the algorithm residual ranged 10-5< I RQIma x < 10-6, and the resultant inlet

flow Mach number converged to Main=0.7. Figure 7.19b) confirms that essentially all

computed action lies in the boundary layer, which appears thereon as a "thick line"

with bumps. Presenting these data in nodal space greatly stretches the lateral

coordinate, Fig. 7.19c), which confirms that there is a complicated double shock-

boundary layer interaction on the last third of the airfoil, and upstream of this the

laminar boundary layer grows smoothly and modestly.

A perspective surface presentation of this solution adds to qualitative assessment,

Figure 7.20a), which clearly shows quality boundary layer resolution achieved and a

double separation region following 2/3-chord. The solution flow approach to the

leading edge stagnation point is ENO, as is the solution exiting all far-field boundaries.

Figure 7.20b) presents in perspective the pressure distribution, which clearly shows the

stagnation peak and the adverse gradient leading to the first shock and its rebound.
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Fig. 7.19 REMI algorithm TWS h Navier-Stokes, laminar, viscous, 4% parabolic arc,

Re=4.0xl06, 13=0.2, {1}T, a) non-uniform mesh, b) axial momentum, c)

axial momentum plotted in nodal space.
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a)

b)

Fig. 7.20 REMI algorithm TWS h Navier-Stokes

solution laminar, 4% parabolic arc,

Re=4.0 x 106, _=0.2, perspective

presentations of, a) axial momentum,

b) pressure c) pressure closeup near

trailing edge

c)
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Figure 7.20c) is a trailing edge region zoom of pressure confirming an ENO solution.

This practical Reynolds number simulation verifies REMI algorithm ability to

handle high aspect ratio discretizations, and has produced an interesting shock-

boundary layer flow interaction embedded strictly within the boundary layer. No

independent benchmark or validation data are available, however, even though this

makes a geometrically simple candidate for code validation. Therefore, a laminar flow

validation was selected corresponding to external shock impingement on a developing

flat plate boundary layer in a uniform supersonic free stream.

The problem geometry is that discussed in Fig. 7.15, and Fig. 7.21 graphs the

essence of the problem, Degrez, et al (1987). An oblique shock generated by a splitter

plate causes boundary layer separation. For inlet flow at Ma_, =2.15, the separation

and reattachment flow remains laminar for Res=0.96x105 based on x s, the shock

intersection distance from the plate leading edge. The free stream stagnation state was

Po = 0.1 atm and To=295OK. The BC definitions accordingly are all Dirichlet at inlet,

pressure is fixed at outlet only in the subsonic boundary layer region, and tangency

with vanishing normal derivative occurs elsewhere, except m I =0=m 2 on the plate

surface (for no-slip). The IC was an Euler solution, generated as discussed for Fig. 7.15,

but augmented with an inviscid stagnation point (single node) at the plate leading edge

to promote the corresponding shock. The 65x76 mesh was modestly shock adapted for

adequate wall region resolution, i.e., the vertical element span was order Re -1.

The laminar viscous solution evolved smoothly from the quasi-Euler IC using

FEMNAS with IRK in the non-iterative mode, and achieved nominal steady state in 400

time steps with CFLma x _ 200. Fig. 7.22 presents perspective and contour distributions

] z,. , -I

Figure 7.21 Shock-laminar boundary layer validation problem
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a)

Fig 7.22 REMI algorithm TWS h Navier-Stokes solution, laminar shock

boundary layer, Re=105, _=0.3 {1}T, perspective and contour graphs of,

a) density, b) Mach number, c) axial momentum.
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of REMI solution axial momentum, density and Mach number, which confirm

attainment of an ENO solution with no spurious boundary reflections. The momentum

graph clearly defines the boundary layer separation region. Figure 7.23 summarizes

the REMI algorithm velocity resolution of this region, and documents the level

agreement achieved with experimental data for surface pressure and skin friction

distributions, Degrez, et al (1987). Excellent quantitative agreement exists in approach

to the separation and within, but the reattachment region shows relatively poorer

agreement. The REMI simulation predicts a lengthier adverse pressure region, hence

the computational reattachment occurred downstream of the experimental data. This

could result from secondary shock reflection effects off the top splitter plate, in the

experiment, or from local viscous region mesh distortion, with use of averaged metric

data (recall section 7.2 discussion). This FEMNAS limitation could aggravate local

excess numerical diffusion effects, as was observed in the Euler shock reflection

benchmark.
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Figure 7.23 Supersonic shock-boundary layer interaction, Main = 2.15, Re=105,

a) REMI separation region velocity resolution; comparisons on

b) surface pressure c) skin friction, symbols are data from Degrez,

et al (1987)

109



8. SUMMARY AND CONCLUSIONS

An "arbitrary grid" CFD algorithm for unsteady aerodynamics applications has

been derived, verified and benchmarked for selected Euler and Navier-Stokes

descriptions. The theory employs a finite element (FE) spatial semi-discretization of a

Taylor series-augmented Galerkin weak statement (WS), which for any FE trial space

basis produces a large, coupled non-linear ordinary differential equation (ODE)

system. The 0-implicit, single-step Euler family, and a newly derived implicit Runge-

Kutta (IRK), algorithm, employ this generated ODE system, producing a large non-

linear algebraic matrix equation statement for computing. This matrix solution

statement was cast as a Newton algorithm, whereupon a matrix tensor product (TP)

factorization was derived as a (hopefully) efficient quasi-Newton iterative

approximation replacing sparse matrix solution methods with relatively efficient block-

banded, iterative mesh sweeping Gauss elimination processes.

In the execution of this project, and the subsequent longer term development

and verification process, close attention was given to key theoretical issues regarding

well-posedness, hence boundary conditions, stability and parasitic stiffness resulting

from finely graded meshes for viscous simulations at aerodynamic Reynolds numbers.

A Lyapanov stability analysis yielded theoretical verification of Navier-Stokes

boundary conditions, enforceable via WS-generated surface integrals, appropriate

everywhere, including subsonic outflows, involving linear combinations of pressure,

surface derivatoric tractions and heat flux vector. The implicit Runge-Kutta ODE

algorithm coefficient set was derived to combine classical second-order time accuracy

with B-consistency and B-stability. This combination of desirable features leads to a

significant performance improvement over either the backwards Euler (0=1) or

trapezoidal (0=0.5) ODE algorithms regarding admissible step-size (Courant number),

freedom from artificial dissipation (0=1), and assimilation of parasitic stiffness

associated with admissible Navier-Stokes meshings. A key post project contribution

was the derivation of consistent metric data handling for TP factorization quasi-

Newton jacobians, first in two dimensions and now in three.

The algorithm features discussed above are potentially applicable to selection of

any FE domain shape, e.g., triangles/tetrahedra and/or quads/hexahedra, and any

degree-polynomial basis defined thereon. The triangle/tetrahedron family has become

associated with the words "unstructured mesh," while the quad/hex family is usually

considered as a "structured mesh." In fact, structured or unstructured meshings can be
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constructed from either element shape, with the quad/hex family exhibiting required

versatility via local embeddings and trial space basis enrichment ("p"-elements) with

'_anging nodes," i.e., degrees-of-freedom that occur as vertex-mid-edge on adjacent

element domains, c.f., Bass, et al (1993). (The triangle/tetrahedron family does not

typically require hanging nodes, although they certainly are theoretically admissible.)

Further, either family of elements is admissible for use with overset "Chimera" meshes

using data handling and interpolation procedures well established in the finite volume

CFD community.

As summarized in the Introduction, we made the choice at project outset to seek

verification/benchmark/validation results for only the quad/hex element family, and

to further restrict consideration to the linear k=l FE basis form only. This was based on

the observation that meshing requirements for genuine Reynolds numbers really

precluded use of explicit ODE methods, and that the TP quasi-Newton algorithm

showed great promise to maintain algorithm accuracy and efficiency for viscous (and

eventually, turbulent) simulations on meshes containing large aspect ratio elements, as

would be required to resolve flow details in surface normal directions. Based on this

decision, the following conclusions may be drawn from the results of this project (and
its extension).

Arbitrary meshing

Generated computational results verify that the quad/hex finite element family

in the TWS h is amenable to substantial non-cartesian distortion while maintaining

accuracy for inviscid reaches of the flowfield and convergence for the TP factorization

quasi-Newton iteration. These confirming data were generated mostly for d=2 and

axisymmetric geometries using the FEMNAS code. The confirming data for d=3 are

just now being generated using AKCE$S.AERO in a parallel processing computer

environment. There appears little practical restriction on mesh aspect ratios or

angularity for shock capturing using efficient metric data averaging techniques. This

meshing arbitrariness extends to viscous region simulations only when accurate

numerical quadrature methods are employed to form dissipative flux vector weak

statement contributions.

This point was unknown during the FEMNAS shock-boundary layer validation

test. The NS dissipative operator was formed using metric-averaging on elements that

departed significantly from parallelograms and algorithm stability problems were

encountered in the shock footprint region on the plate. The TWS h _-dissipation term

would also suffer from this inaccuracy also. However, it was exponentially "shut-ofF'
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in the boundary layer lower reaches, hence did not affect loss of stability in our

opinion. The concluding opinion is that any and all dissipation-type forms (second

derivatives) in Euler/RaNS systems must be accurately evaluated for arbitrary meshing

being an attribute of the quad/hex FE element family in a TWS h algorithm.

Numerical dissipation

The TWS N theory provides an in-the-continuum framework for deriving tensor-

invariant augmentations to the RaNS system for numerical dissipation. Work funded

in this original contract (Baker and Kim, 1987) verified a wide range of current practice

dissipative algorithms belong to the theory. Work in progress now (Iannelli, 1993,

1994) confirms that this theory extends to encompass many flux vector splitting CFD

methods recognized today as TVD/ENO finite volume methods.

Ultimately, robustness of the artificial dissipation procedure is key to success for

shock capturing aerodynamics applications. A significant simplification to the TWS N

theory-derived [3 dissipation term was made to establish the scalar _form used in this

project. With accurate metric data handling and block mesh adaptation, this

construction is verified to admit prediction of monotone shocks for the range transonic

to hypersonic, oblique and normal. The surface perspective data presentations are

particularly graphic for this verification, confirming fully the shock quality attainable

via the k=l FE basis implementation of TWS h. However, while not fully confirmed,

evidence exists that excessive "crosswind diffusion" accrues to the scalar construction

which accounts for the move (in AKCESS.AERO) to the tensor form with options to

guarantee (the need for) uniform positivity. Further, the move to a numerical

quadrature for the _terms, as well as the genuine viscous/heat conducting diffusion

terms, could well lead to improved performance for either formulation, or any

successors, on arbitrary meshes.

Tensor product matrix iteration

As stated in the Introduction, and fully detailed in Section 6, the TP quasi-

Newton iteration algorithm requires very careful attention to yield an accurate

formulation, principally metric data handling. The theory emerged to accomplish this

(in two dimensions) in the two years of project extension, following expiration of the

original project performance period. Now with AKCESS.AERO, the three dimensional

form is approaching operational verification. Certainly alternatives exist, such as line

Gauss Siedel, however the TP formulation appears particularly well suited to a parallel

processing implementation on emerging machine architectures.
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The generated verification and benchmark data confirm that, correctly formed,
the TP matrix iteration algorithm is convergent and stable on non-cartesian meshes for

solutions in inviscid flow reaches. Based on this assessment, the experienced stability

problems in the shock boundary layer interaction validation test are probably more

associated with matrix formation inadequacies than in the linear algebra construction.

The template input procedures now available will certainly expedite the range of

computational experiments required to determine existence of the optimal form.

Implicit ODE methods

One precept of this project was that genuinely implicit ODE methods must be

used in distinction to the explicit or operator splitting methods more familiar to the FE

unstructured mesh CFD aerodynamics research community. The TP matrix iteration

was a key ingredient to this goal and the emergence of the implicit-Runge-Kutta

algorithm was the complement. In non-iterative mode, it is second order accurate,

stiffly stable and amenable to use with large CFL number on highly distorted meshes.

While requiring twice the work of the 0-implicit family, firm evidence is established

that its use may be more efficient than the equivalent O-delta form. It certainly adds to

the efficiency of a NS simulation, in comparison to alternative unstructured mesh

algorithms that are not as well suited to implicit ODE algorithms.

Algebraic block macro meshing

Algebraic block mesh constructions are particularly well suited to the developed

TWS h IF. algorithm, since no verified need exists to maintain a degree of mesh

regularity in either inviscid or viscous flow reaches. Therefore, as an alternative to on-

the-fly mesh enrichment/coarsening of shock tracking unstructured algorithms, block

mesh adaptation for shock layer refinement may be a computationally attractive

alternative. The underlying strategy for either approach is degree of freedom economy,

usually at the expense of memory, using error detection/estimation algorithms based

on equipartition of estimated error density. These error estimation theories are now

well established; coupling the verified TWS h algorithm mesh arbitrariness versatility to

an estimator would appear the logical replacement to the manual mode employed for

benchrnarking.

In summary, this project has succeeded to a degree considerably smaller than

originally anticipated, due principally to severe underestimation of the difficulties

associated with converting a cleanly derived theory into code practice. During the

original two year performance period we succeeded in establishing only a verification
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level TP factorization procedure, accurate on nominally cartesian meshes. With CMC

support, Iannelli started his dissertation project near the end of this period, hence

derived the incisive analyses required to move to adaptive block meshing with quality

ENO shock capturing and accurate TP constructions. His two dimensional FEMNAS

code was developed in the process, hence served as the research test bed to validate the

determined set of algorithm design decisions.

The theory and code practice has now been pushed to three dimensions via the

AKCESS., software platform which provides a genuinely versatile, externally

programmable venue to validate ideas and theory variations as developed. Certainly,

as painfully learned in this project, an "Achilles heel" of CFD is code inflexibility, an

unreliability, hence the need for constant reprogramming for every step forward.

Hopefully, the emergence of AKCESS., as a project consequence, in the longer term will

warrant the financial and personnel efforts expended in its creation.

AKCESS.. is in use today supporting research on a new p-element embedding

strategy, in the base k=l weak statement formulation, for monotonicity control in

shocks and wall layer regions, without requiring extensive mesh adaptation or artificial

diffusion, (Roy and Baker, 1993). For example, Fig. 8.1 illustrates results comparing

standard vs. p-embedded solutions for the (inviscid) minimum resolution (2-node)

traveling square wave, and the steady non-linear viscous Burgers problem (Re=105)

emulating a shock in viscous flow. The classical k=l and/or k=2 solutions are grossly

distorted by dispersion error, while nodally-exact ENO solutions on coarse meshes, with

no added artificial diffusion, accrue to p-embedding on the linear basis algorithm.

This newest FE methodology is being "immediately" assimilated into AKCESS..

for compressible and incompressible Navier-Stokes benchmarks and verifications.

Thereby, the new CFD technology base evolves'in the "production code," hence little

time is wasted in transition from a research code. The lesson from this project is well

learned, and the end result is rapidly bearing fruit.
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APPENDIX A

AKCESS.AERO REMI template, d=2, Newton

INTEGRATION FACTORS

INITIAL_TIME

FINAL_TIME

PROBLEM_CONVERGENCE_CRITERIA

MAXIMUM_CHANGE_IN_Q___(DQ)

INITIAL_TIME_STEP

TIME_STEP_MULTIPLIER

MAXIMUM_TIME_STEP

CRITERIA_TO_RAISE_MAX_TIME_STEP

MAXIMUM_NUMBER_OF_STEPS

MAXIMUM_NUMBER OF ITERATIONS_PER_STEP

ITERATION_CONVERGENCE_CRITERIA

THETA IMPLICITNESS_FACTOR

MAXIMUM_VA LUE_OF_ANY_DELTA_Q

TRANSFORMATION ARRAYS

ETKJ 1.

DETJ 1.
# DETE 0.

BOUNDARY CONDITIONS

RHO ETOT M1 M2 PRSC #ORDER

DIR_RT D D 0 0 0 #DIRICHLET

DIR_M1 0 0 D 0 0 #DIRICHLET

DIR_M2 0 0 0 D 0 # DIRICHLET

NO_SLIP 0 0 D D 0 # NO SLIP WALL

DIR_PRS 0 0 0 0 D #DIRICHLET

THR_IN [3-3] [3-3] [3 -3] 13-3] 0 # THROUGH FLOW

THR_OUT [4-4] [4-4] [4 -4] [4-41 0 # THROUGH FLOW
BLANK D D D D D # NO SLIP WALL

TITLE **** TEMPLATE FILE TEMP.CNS2D.REMI ****

CNS2D TWS ALGORITHM, TENSOR MATRIX A JACOBIANS (12/23/93)

RESIDUALS

RHO 1 # VARIABLE, SET NO., --- [M] * {[RHO.NEW] - [RHO.OLD]}

000(;1)(B200)(-RHO)

RHO 2 # VARIABLE, SET NO., --- {RQ} = [V]{Q} + [D]{Q} + [DB]{Q}

(-)0(Ul+U2)(lO2;0)(B3010)(RHO)

+(-)0(Ul+U2)(304;0)(B3020)(RHO)

+(HBR)0(UMAG,HB1)(l122;-1)(B3011)(RHO)

+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(RHO)

+ (HBR)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(RHO)

RHO 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR (RQ}

()0(Ul+U2)(102;0)(B3010)(RHO)

+00(U1+U2)(304;0)(B3020)(RHO)

+00(Ul+U2)(102;0)(B31P1)(RHO)

+00(Ul+U2)(304;0)(B32P2)(RHO)

+(PHRI)()(UMAG,HB1)(1122;-1)(B3011)(RHO)

+(PHRI)()(UMAG,HB1)(3344;-1)(B3022)(RHO)
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+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(RHO)

RHO 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(RHO)

+00(U1+U2)(304;0)(B3020)(RHO)

+00(U1+U2)(102;0)(B31P1)(RHO)

+00(U1+U2)(304;0)(B32P2)(RHO)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(RHO)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(RHO)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(PHRO) 0(UMAG,HB1)(1324;-1)(B3012)(RHO)

APPENDIX A

ETOT 1 # VARIABLE, SET NO., --- [M] * {[ETOT.NEW] - [ETOT.OLD]}

000(;1)(B200)(-ETOT)

ETOT 2 # VARIABLE, SET NO.,--- {RQ} = [Vl{Q} + [D]{Q} + [DB]{Q}

(-)0(U1+U2)(102;0)(B3010)(EP)

+(-)0(U1 +U2)(304;0)(B3020)(EP)

+(PDUM2,PEI)00(1122;-1)(B211)(TEMP)

+(PDUM2,PEI)00(3344;-1)(B222)(TEMP)

+(PDUM2,PEI)00(1324;-1)(B221)(TEMP)

+(PDUM2,PEI)00(1324;-1)(B212)(TEMP)

+(HBR)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(ETOT)

+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(ETOT)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)
ETOT 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(EP)

+00(U1+U2)(304;0)(B3020)(EP)

+00(U1+U2)(102;0)(B31P1)(EP)

+00(U1+U2)(304;0)(B32P2)(EP)

+(PHRI)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(ETOT)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(ETOT)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)

ETOT 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(EP)

+00(U1+U2)(304;0)(B3020)(EP)

+00(U1+U2)(102;0)(B31P1)(EP)

+00(U1+U2)(304;0)(B32P2)(EP)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(ETOT)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(ETOT)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)

M1 1 # VARIABLE, SET NO., --- [M] * {[M1.NEW] - [M1.OLD]}

000(;1)(B200)(-M1)

M1 2 # VARIABLE, SET NO., --- {RQ} = [VI{Q} + [D]{Q} + [DBI{Q}

(-)0(UI+U2)(102;0)(B3010)(M1)

+(-)0(Ul+U2)(304;0)(B3020)(M 1)

+(EULER)00(1;0)(B201)(PRSC)

+(EULER)00(3;0)(B202)(PRSC)

+(PDUM2,REI)00(1122;-1)(B211)(U1)

+(PDUM2,REI)()0(3344;-1)(B222)(U 1)

+(PDUM2,REI)()0(1324;-1)(B221)(U1)

+(PDUM2,REI)()0(1324;-1)(B212)(U1)

+(HBR)()(UMAG,HB1)(1122;-1)(B3011)(M 1)
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+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(M1)
+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(M1)
+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(M1)
M1 3 # VARIABLE,SETNO.,--- INFLOWBOUNDARYSETFOR{RQ}

+00(Ul+U2)(102;0)(B3010)(M1)
+00(U1+U2)(304;0)(B3020)(M1)
+00(U1+U2)(102;0)(B31P1)(M1)
+00(U1+U2)(304;0)(B32P2)(M1)
+(PHRI)0(UMAG,HB1)(1122;-1)(B3011)(M1)
+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(M1)
+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(M1)
+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(M1)

M1 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(M1)

+00(U1+U2)(304;0)(B3020)(M1)

+00(Ul+U2)(102;0)(B31P1)(M1)

+00(U1+U2)(304;0)(B32P2)(M1)

+(PHRO)0(UMAG,HB1 )(1122;-1)(B3011)(M1 )

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(M1)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(M1)

+(PHRO)()(UMAG,HB1)(1324;-1)(B3012)(M1)

M2 1 # VARIABLE, SET NO., --- [MI * {[M2.NEW] - [M2.OLD]}

000(;1)(B200)(-M2)

M2 2 # VARIABLE, SET NO., --- {RQ} = [V]{Q} + [D]{Q} + [DB]{Q}

(-)0(U1+U2)(102;0)(B3010)(M2)

+(-)0(Ul+U2)(304;O)(B3020)(M2)

+(EULER) 00(2;0)(B201)(PRSC)

+(EULER)00(4;0)(B202)(PRSC)

+(PDUM2,REI)00(1122;-1)(B211)(U2)

+(PDUM2,REI)00(3344;-1)(B222)(U2)

+(PDUM2,REI)00(1324;-1)(B221)(U2)

+(PDUM2,REI)00(1324;-1)(B212)(U2)

+(HBR)0(UMAG,HB1)(1122;-1)(B3011)(M2)

+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(M2)

+(HBR)()(UMAG,HB1)(1324;-1)(B3021)(M2)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(M2)
M2 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

+00(Ul+U2)(102;O)(B3010)(M2)

+00(Ul+U2)(304;0)(B3020)(M2)

+00(Ul+U2)(102;0)(B31P1)(M2)

+00(U1+U2)(304;0)(B32P2)(M2)

+(PHRI)0(UMAG,HB1)(1122;-1 )(B3011)(M2)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(M2)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(M2)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(M2)
M2 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(M2)

+00(U1+U2)(304;0)(B3020)(M2)

+()0(U1+U2)(102;0)(B31P1)(M2)

+00(U1+U2)(304;0)(B32P2)(M2)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(M2)

+(PHRO)0(UMAG,HB1) (3344;-1)(B3022)(M2)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(M2)

+(PHRO)0(UMAG,HB1) (1324;-1)(B3012)(M2)
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JACOBIANS

APPENDIX A

RHO RHO 1 1 # VARBL, VARDIF, SET, # OF TERMS, ALL DIRECTIONS

000(;1)(B200)0

RHO RHO 2 1 # VARBL, VARDIF, SET, # OF TERMS, ALL DIRECTIONS

+(-)0(U1+U2)(102;0)(B3010)0+(-)0(U1+U2)(304;0)(B3020)0

+00(RHO)(1;O)(B3010) (UOR)+00(RHO)(2;0)(B3010)(VOR)

+00(RHO)(3;0)(B3020)(UOR)+00(RHO)(4;0)(B3020)(VOR)

+(-,HBJ)0(RHO,HB1)(l122;-1)(B3110)(UMOR)

+(HBJ)0(RHO, HB1)(3344;-1)(B3220)(UMOR)

+(-,HBJ)0(RHO, HB1)(1324;-1)(B3120)(UMOR)

+(HBJ)0(RHO, HB1)(1324;-1)(B3210)(UMOR)

+(HBJ)0(UMAG,HB1)(1122;-1)(B3011)0+(HBJ)0(UMAG,HB1)(3344;-1 )(B3022)0

+(HBJ)0(UMAG,HB1)(1324;-1)(B3012)0+(HBJ)0(UMAG,HB1)(1324;-1)(B3021)0

RHO RHO 3 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1

00(Ul+U2)(102;0)(B3010)0+00(Ul+U2)(102;0)(B31P1)0

+0()(U1+U2)(304;0)(B3020)0+00(U1+U2)(304;0)(B32P2)0

+(-)0(RHO)(1;0)(B3010)(UOR)+(-)0(RHO)(2;0)(B3010)(VOR)

+(-)0(RHO)(1;0)(B31P1)(UOR)+(-)0(RHO)(2;0)(B31P1)(VOR)

+(-)0(RHO)(3;0)(B3020)(UOR)+(-)0(RHO)(4;0)(B3020)(VOR)

+(-)0(RHO)(3;0)(B32P2)(UOR)+(-)0(RHO)(4;0)(B32P2)(VOR)

+(-,PHJI)0(RHO, HB1)(1122;-1)(B3110)(UMOR)

+(-,PHJI)0(RHO, HB1)(3344;-1)(B3220)(UMOR)

+(-,PHJI)0(RHO, HB1)(1324;-1)(B3120)(UMOR)

+(-,PHJI)0(RHO, HB1)(1324;- 1)(B3210)(UMOR)

+(PHJI)()(UMAG,HB1)(l122;-1)(B3011)0

+(PHJI)0(UMAG,HB1)(3344;-1)(B3022)0

+(PHJI)0(UMAG,HB1)(1324;-1)(B3012)0

+(PHJI)0(UMAG,HB1)(1324;-1)(B3021)0
RHO RHO 4 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1

00(Ul+U2)(102;0)(B3010)0+00(Ul+U2)(102;0)(B31P1)0

+00(U1+U2)(304;0)(B3020)0+00(Ul+U2)(304;0)(B32P2)0

+(-)0(RHO)(1;0)(B3010)(UOR)+(-)0(RHO)(2;0)(B3010)(VOR)

+(-)0(RHO)(1;0)(B31P1)(UOR)+(-)0(RHO)(2;0)(B31P1)(VOR)

+(-)0(RHO)(3;0)(B3020)(UOR)+(-)0(RHO)(4;0)(B3020)(VOR)

+(-)0(RHO)(3;0) (B32P2)(UOR)+(-)0(RHO)(4,_3)(B32P2)(VOR)

+(PHJO)0(RHO,HB1)(1122;-1)(B3110)(UMOR)

+(PHJO)0(RHO,HB1)(3344;-1)(B3220)(UMOR)

+(PHJO)0(RHO,HB1)(1324;-1)(B3120)(UMOR)

+(PHJO)0(RHO,HB1)(1324;-1)(B3210)(UMOR)

+(PHJO)0(UMAG,HB1)(1122;-1 )(B3011 )0

+(PHJO)0(UMAG,HB1)(3344;-1)(B3022)0

+(PHJO)0(UMAG,HB1)(1324;-1 )(B3012)0

+ (PHJO)0(UMAG,HB1)(1324;-1)(B3021)0

ETOT ETOT 1 1 T

0()0(;1)(B200)0
ETOT ETOT 2 1 T

+(-)0(Ul+U2)(102;0)(B3010)0+(-)0(U1 +U2)(304;0)(B3020)0

+(-GM1)0(U1+U2)(102;0)(B3010)0
+(-GM1)0(U1+U2)(304;0)(B3020)0

+(ZPEC,PEI)00(l122;-1)(B211)0+(ZPEC,PEI)0()(3344;-1)(B222)0

+(ZPEC,PEI)00(1324;-1)(B221)0+(ZPEC,PEI)00(1324;-1)(B212)0

+(HBJ)0(UMAG,HB1)(1122;-1)(B3011)0+(HBJ)0(UMAG,HB1)(3344;-1)(B3022)0

+(HBJ)0(UMAG,HB1)(1324;-1)(B3012)0+(HBJ)0(UMAG,HB1)(1324;-1)(B3021)0
ETOTETOT 3 1 T
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00(Ul+U2)(102;0)(B3010)0+00(Ul+U2)(102;0)(B31P1)0
+(GM1)0(U1+U2)(102;0)(B3010)0+(GM1)0(U1+U2)(102;0)(B31P1)0
+00(Ul+U2)(304;0)(B3020)0+00(U1+U2)(304;0)(B32P2)0
+(GM1)0(U1+U2)(304;0)(B3020)0+(GM1)0(Ul+U2)(304;0)(B32P2)0
+(PHJI)0(UMAG,HB1)(1122;-1)(B3011)0
+(PHJI)0(UMAG,HB1)(3344;-1)(B3022)0
+(PHJI)0(UMAG,HB1)(1324;-1)(B3012)0
+(PHJI)0(UMAG,HB1)(1324;-1)(B3021)0
ETOTETOT4 1 T
00(U1+U2)(102;0)(B3010)0+00(Ul+U2)(102;0)(B31P1)0
+(GM1)0(U1+U2)(102;0)(B3010)0+(GM1)0(U1+U2)(102;0)(B31P1)0
+00(U1+U2)(304;0)(B3020)0+00(U1+U2)(304;0)(B32P2)0
+(GM1)0(U1+U2)(304;0)(B3020)0+(GM1)0(Ul+U2)(304;0)(B32P2)0
+(PHJO)0(UMAG,HB1)(1122;-1)(B3011)0
+(PHJO)0(UMAG,HB1)(3344;-1)(B3022)0
+(PHJO)0(UMAG,HB1)(1324;-1)(B3012)0
+(PHJO)0(UMAG,HB1)(1324;-1)(B3021)0
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M1M111 T
000(;1)(B200)0
MIM12 1 T

+(-)0(M1)(1;0)(B3010)(OSRH)+(-)0(M1)(3;0)(B3020)(OSRH)
+(-,GM1)00(1;0)(B201)(U1)+(-,GM1)00(3;0)(B202)(U1)
+(-)0(U1+U2)(102;0)(B3010)0+(-)0(U1+U2)(304;0)(B3020)0
+(PDUM2,REI)0(OSRH)(l122;-1)(B3011)0
+(PDUM2,REI)0(OSRH)(3344;-1)(B3022)0
+(PDUM2,REI)0(OSRH)(1324;-1)(B3021)0
+(PDUM2,REI)0(OSRH)(1324;-1)(B3012)0
+(HBJ)0(M1,HB1)(1122;-1)(B3110)(UORU)
+(HBJ)0(M1,HB1)(3344;-1)(B3220)(UORU)
+(HBJ)0(M1,HB1)(1324;-1)(B3120)(UORU)
+(HBJ)0(M1,HB1)(1324;-1)(B3210)(UORU)
+(HBJ)0(UMAG,HB1)(l122;-1)(B3011)0+(HBJ)0(UMAG,HB1)(3344;-1)(B3022)0
+(HBJ)0(UMAG,HB1)(1324;-1)(B3012)0+(HBJ)0(UMAG,HB1)(1324;-1)(B3021)0
MIM13 1 T
00(M1)(1;0)(B3010)(OSRH)+00(M1)(1;0)(B31P1)(OSRH)
+00(U1+U2)(102;O)(B3010)0+00(U1+U2)(102;O)(B31P1)0
+00(M1)(3;0)(B3020)(OSRH)+00(M1)(3;0)(B32P2)(OSRH)
+00(Ul+U2)(304;0)(B3020)0+00(Ul+U2)(304;O)(B32P2)0
+(PHJI)0(M1,HB1)(1122;-1)(B3110)(UORU)
+(PHJI)()(M1,HB1)(3344;-1)(B3220)(UORU)
+(PHJI)()(M1,HB1)(1324;-1)(B3120)(UORU)
+(PHJI)()(M1,HB1)(1324;-1)(B3210)(UORU)
+(PHJI)0(UMAG,HB1)(1122;-1)(B3011)0
+(PHJI)()(UMAG,HB1)(3344;-1)(B3022)0
+(PHJI)()(UMAG,HB1)(1324;-1)(B3012)0
+(PHJI)()(UMAG,HB1)(1324;-1)(B3021)0
M1M141 T
(FX2,GM1)00(1;0)(B201)(U1)+(FX2,GM1)00(3;0)(B202)(U1)

+00(M1)(1;0) (B3010)(OSRH)+ 00(M1)(1;0)(B31P1)(OSRH)

+0 0(U1+U2)(102;0)(B3010)0+00(U1+U2)(102;0)(B31P1)0

+00(M1)(3;0)(B3020)(OSRH)+00(M1)(3;0)(B32P2)(OSRH)

+00(U1+U2)(304;0)(B3020)0+00(U1 +U2)(304;0)(B32P2)0

+(PHJO)0(M 1,HB1 )(1122;-1)(B3110)(UORU)

+(PHJO)0(M1,HB1)(3344;-1)(B3220)(UORU)

+(PHJO)()(M 1,HB1)(1324;-1)(B3120)(UORU)
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+(PHJO)0(M1,HB1)(1324;-1)(B3210)(UORU)
+(PHJO)0(UMAG,HB1)(l122;-1)(B3011)0
+(PHJO)0(UMAG,HB1)(3344;-1)(B3022)0
+(PHJO)0(UMAG,HB1)(1324;-1)(B3012)0
+(PHJO)0(UMAG,HB1)(1324;-1)(B3021)0
MIM18 1 T
(BTURB,REI)0(YPLS)(;1)(A200)0

M2M211 T
000(;1)(B200)0
M2M22 1 T

+(-,GM1)00(2;0)(B201)(U2)+(-,GM1)00(4;0)(B202)(U2)
+(-)0(M2)(2;0)(B3010)(OSRH)+(-)0(M2)(4;0)(B3020)(OSRH)
+(-)0(Ul+U2)(102;0)(B3010)0+(-)0(U1+U2)(304;0)(B3020)0
+(PDUM2,REI)0(OSRH)(1122;-1)(B3011)0
+(PDUM2,REI)0(OSRH)(3344;-1)(B3022)0
+(PDUM2,REI)0(OSRH)(1324;-1)(B3021)0
+(PDUM2,REI)0(OSRH)(1324;-1)(B3012)0

APPENDIXA

+(HBJ)0(M2,HB1)(l122;-1)(B3110)(VORU)
+(HBJ)0(M2,HB1)(3344;-1)(B3220)(VORU)
+(HBJ)()(M2,HB1)(1324;-1)(B3120)(VORU)
+(HBJ)0(M2,HB1)(1324;-1)(B3210)(VORU)
+(HBJ)0(UMAG,HB1)(1122;-1)(B3011)0+(HBJ)0(UMAG,HB1)(3344;-1)(B3022)0
+(HBJ)0(UMAG,HB1)(1324;-1)(B3012)0+(HBJ)0(UMAG,HB1)(1324;-1)(B3021)0
M2M23 1 T
00(M2)(2;0)(B3010)(OSRH)+00(M2)(2;0)(B31P1)(OSRH)
+00(Ul+U2)(102;0)(B3010)0+00(U1+U2)(102;0)(B31P1)0
+00(M2)(4;0)(B3020)(OSRH)+00(M2)(4;0)(B32P2)(OSRH)
+00(U1+U2)(304;0)(B3020)0+00(Ul+U2)(304,_)(B32P2)0
+(PHJI)0(M2,HB1)(1122;-1)(B3110)(VORU)
+(PHJI)0(M2,HB1)(3344;-1)(B3220)(VORU)
+(PHJI)0(M2,HB1)(1324;-1)(B3120)(VORU)
+(PHJI)0(M2,HB1)(1324;-1)(B3210)(VORU)
+(PHJI)0(UMAG,HB1)(l122;-1)(B3011)0
+(PHJI)0(UMAG,HB1)(3344;-1)(B3022)0
+(PHJI)0(UMAG,HB1)(1324;-1)(B3012)0
+(PHJI)0(UMAG,HB1)(1324;-1)(B3021)0
M2M24 1 T
(FX2,GM1)00(2;0)(B201)(U2)+(FX2,GM1)00(4;0)(B202)(U2)
+()0(M2)(2;0)(B3010)(OSRH)+00(M2)(2;0)(B31P1)(OSRH)
+00(U1+U2)(102;0)(B3010)0+()0(Ul+U2)(102;0)(B31P1)0
+()0(M2)(4;0)(B3020)(OSRH)+00(M2)(4;0)(B32P2)(OSRH)
+()0(U1+U2)(304;0)(B3020)0+00(Ul+U2)(304;0)(B32P2)0
+(PHJO)0(M2,HB1)(1122;-1)(B3110)(VORU)
+(PHJO)0(M2,HB1)(3344;-1)(B3220)(VORU)
+(PHJO)0(M2,HB1)(1324;-1)(B3120)(VORU)
+(PHJO)0(M2,HB1)(1324;-1)(B3210)(VORU)
+(PHJO)0(UMAG,HB1)(l122;-1)(B3011)0
+(PHJO)()(UMAG,HB1)(3344;-1)(B3022)0
+(PHJO)()(UMAG,HB1)(1324;-1)(B3012)0
+(PHJO)0(UMAG,HB1)(1324;-1)(B3021)0
M2M28 1 T
(BTURB,REI)0(YPLS)(;1)(A200)0
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RHO M1 2 1 T

(-)0(RHO)(1;0)(B3010)(OSRH)+(-)0(RHO)(3;0)(B3020)(OSRH)

+(HBJ)0(RHO,HB1)(l122;-1)(B3110)(UORU)

+(HBJ)0(RHO,HB1)(3344;-1)(B3220)(UORU)

+(HBJ)0(RHO, HB1)(1324;-1)(B3120)(UORU)

+(HBJ)0(RHO, HB1)(1324;-1)(B3210)(UORU)
RHO M1 3 1 T

00(RHO)(1;0)(B3010)(OSRH)+00(RHO)(1;0)(B31 P1)(OSRH)

+00(RHO)(3;0)(B3020)(OSRH)+00(RHO)(3;0)(B32P2)(OSRH)

+(PHJI)0(RHO,HB1)(1122;-1)(B3110)(UORU)

+(PHJI)0(RHO,HB1)(3344;-1)(B3220)(UORU)

+(PHJI)0(RHO, HB1)(1324;-1)(B3120)(UORU)

+(PHJI)0(RHO,HB1)(1324;-1)(B3210)(UORU)
RHO M1 4 1 T

00(RHO)(1;0)(B3010)(OSRH)+()0(RHO)(1;0)(B31P1)(OSRH)

+00(RHO)(3;0)(B3020)(OSRH)+00(RHO)(3;0)(B32P2)(OSRH)

+(PHJO)0(RHO,HB1)(1122;-1)(B3110)(UORU)

+(PHJO)0(RHO,HB1)(3344;-1)(B3220)(UORU)

+(PHJO)0(RHO,HB1)(1324;-1)(B3120)(UORU)

+(PHJO)0(RHO,HB1)(1324;-1)(B3210)(UORU)

RHO M2 2 1 T

(-)0(RHO)(2;0)(B3010)(OSRH)+(-)0 (RHO)(4;0)(B3020)(OSRH)

+(HBJ)0(RHO,HB1)(l122;-1)(B3110)(VORU)

+(HBJ)0(RHO,HB1)(3344;-1)(B3220)(VORU)

+(HBJ)0(RHO,HB1)(1324;-1)(B3120)(VORU)

+(HBJ)()(RHO,HB1)(1324;-1)(B3210)(VORU)
RHO M2 3 1 T

00(RHO)(2;0)(B3010)(OSRH)+00(RHO)(2;0)(B31P1)(OSRH)

+00(RHO)(4;0)(B3020)(OSRH)+00(RHO)(4;0)(B32P2)(OSRH)

+(PHJI)0(RHO,HB1)(1122;-1)(B3110)(VORU)

+(PHJI)0(RHO,HB1)(3344;-1)(B3220)(VORU)

+(PHJI)0(RHO,HB1)(1324;-1)(B3120)(VORU)

+(PHJI)0(RHO,HB1)(1324;-1)(B3210)(VORU)
RHO M2 4 1 T

00(RHO)(2;0)(B3010)(OSRH)+00(RHO)(2;0)(B31P1)(OSRH)

+00(RHO)(4;0)(B3020)(OSRH)+00(RHO)(4;0)(B32P2)(OSRH)

+(PHJO)0(RHO,HB1 )(1122;-1)(B3110)(VORU)

+(PHJO)0(RHO,HB1)(3344;-1)(B3220)(VORU)

+(PHJO)0(RHO,HB1)(1324;-1)(B3120)(VORU)

+(PHJO)0(RHO,HB1)(1324;-1)(B3210)(VORU)

ETOTRHO21 T

00(EP)(1;0)(B3010)(UOR)+00(EP)(2;0)(B3010)(VOR)

+00(EP)(3;0)(B3020)(UOR)+00(EP)(4;0)(B3020)(VOR)

+(HGMMKI)0(UI+U2)(102;0)(B3010)(UVWS)

+(HGMMKI)0(UI+U2)(304;0)(B3020)(UVWS)

+(HBJ)0(ETOT,HB1)(1122;-1)(B3110)(UMOR)

+(HBJ) 0(ETOT,HB1)(3344;-1)(B3220)(UMOR)

+(HBJ)0(ETOT,HB1)(1324;-1)(B3120)(UMOR)

+(HBJ)0(ETOT,HB1)(1324;-1)(B3210)(UMOR)
ETOTRHO31 T

(-)0(EP)(1;0)(B3010)(UOR)+(-)0(EP)(2;0)(B3010)(VOR)

+(-)0(EP)(3;0)(B3020)(UOR)+(-)0(EP)(4;0)(B3020)(VOR)

+(-)0(EP)(1;0)(B31P1)(UOR)+(-)0(EP)(2;0)(B31P1)(VOR)
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+(-)0(EP)(3;0)(B32P2)(UOR)+(-)0(EP)(4;0)(B32P2)(VOR)
+(-,HGMMKI)0(UI+U2)(102;0)(B3010)(UVWS)
+(-,HGMMKI)0(UI+U2)(304;0)(B3020)(UVWS)
+(-,HGMMKI)0(U1+U2)(102;0)(B31P1)(UVWS)
+(-,HGMMKI)0(U1+U2)(304;0)(B32P2)(UVWS)
+(PHJI)0(ETOT,HB1)(l122;-1)(B3110)(UMOR)
+(PHJI)0(ETOT,HB1)(3344;-1)(B3220)(UMOR)
+(PHJI)0(ETOT,HB1)(1324;-1)(B3120)(UMOR)
+(PHJI)0(ETOT,HB1)(1324;-1)(B3210)(UMOR)
ETOTRHO41 T
(-)0(EP)(1;0)(B3010)(UOR)+(-)0(EP)(2;0)(B3010)(VOR)
+(-)0(EP)(3;0)(B3020)(UOR)+(-)0(EP)(4;0)(B3020)(VOR)
+(-)0(EP)(1;0)(B31P1)(UOR)+(-)0(EP)(2;0)(B31P1)(VOR)
+(-)()(EP)(3;0)(B32P2)(UOR)+(-)0(EP)(4;0)(B32P2)(VOR)
+(-,HGMMKI)0(UI+U2)(102;0)(B3010)(UVWS)
+(-,HGMMKI)0(UI+U2)(304;0)(B3020)(UVWS)
+(NF2,-,HGMMKI)0(Ul+U2)(102;0)(B31P1)(UVWS)
+(NF2,-,HGMMKI)0(Ul+U2)(304;0)(B32P2)(UVWS)
+(PHJO)0(ETOT,HB1)(1122;-1)(B3110)(UMOR)
+(PHJO)0(ETOT,HB1)(3344;-1)(B3220)(UMOR)
+(PHJO)0(ETOT,HB1)(1324;-1)(B3120)(UMOR)
+(PHJO)0(ETOT,HB1)(1324;-1)(B3210)(UMOR)

ETOT M1 2 1 T

(-)0(EP)(1;0)(B3010)(OSRH)+(-)0(EP)(3;0)(B3020)(OSRH)

+(HBJ)0(ETOT, HB1 )(1122;-1 )(B3110)(UORU)

+(HBJ)0(ETOT, HB1)(3344;-1)(B3220)(UORU)

+(HBJ)0(ETOT, HB1)(1324;-1)(B3120)(UORU)

+(HBJ)0(ETOT, HB1)(1324;-1)(B3210)(UORU)

+(GMMKI)0(UI+U2)(102;0)(B3010)(U1)

+(GMMKI)0(UI+U2)(304;0)(B3020)(U1)
ETOT M1 3 1 T

00(EP)(1;0)(B3010)(OSRH)+00(EP)(1;0)(B31P1)(OSRH)

+00(EP)(3;0)(B3020)(OSRH)+00(EP)(3;0)(B32P2)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(B3010)(U1)

+(-GMMKI)0(UI+U2)(304;0)(B3020)(U1)

+ (-GMMKI)0(U1+U2)(102;0)(B31P1)(U1)

+(-GMMKI)0(U1 +U2)(304;0)(B32P2)(U1)
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+(PHJI)0(ETOT, HB1)(1122;-1)(B3110)(UORU)

+(PHJI)0(ETOT, HB1)(3344;-1)(B3220)(UORU)

+(PHJI)0(ETOT,HB1)(1324;-1)(B3120)(UORU)

+(PHJI)0(ETOT,HB1)(1324;- 1)(B3210)(UORU)
ETOT M1 4 1 T

00(EP)(1;0)(B3010)(OSRH)+00(EP)(1;0)(B31P1)(OSRH)

+00(EP)(3;0)(B3020)(OSRH)+00(EP)(3;0)(B32P2)(OSRH)

+ (-GMMKI) 0(U1 +U2)(102;0)(B3010)(U1)

+(-GMMKI)0(U1 +U2)(304;0)(B3020)(U1)

+(NF2,-GMMKI)0(U1 +U2)(102;0)(B31P1)(U1)

+(NF2,-GMMKI)0(U1 +U2)(304;0)(B32P2)(U1)

+(PHJO)0(ETOT, HB1)(1122;-1)(B3110)(UORU)

+(PHJO)0(ETOT, HB1)(3344;-1)(B3220)(UORU)

+(PHJO)0(ETOT,HB1)(1324;- 1)(B3120)(UORU)

+(PHJO)0(ETOT,HB1 )(1324;-1 )(B3210)(UORU)
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ETOT M2 2 1 T

(-)0(EP)(2;0)(B3010)(OSRH)+(-)0(EP)(4;0)(B3020)(OSRH)

+(HBJ)0(ETOT, HB1)(l122;-1)(B3110)(VORU)

+(HBJ)0(ETOT,HB1)(3344;-1)(B3220)(VORU)

+(HBJ)0(ETOT,HB1)(1324;- 1)(B3120)(VORU)

+(HBJ)0(ETOT,HB1)(1324;-1)(B3210)(VORU)

+(GMMKI)0(UI+U2)(102;0)(B3010)(U2)

+(GMMKI)0(UI+U2)(304;0)(B3020)(U2)
ETOT M2 3 1 T

00(EP)(2;0)(B3010)(OSRH)+00(EP)(2;0)(B31P1)(OSRH)

+00(EP)(4;0)(B3020)(OSRH)+00(EP)(4;0)(B32P2)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(B3010)(U2)

+(-GMMKI)0(U1 +U2)(304;0)(B3020)(U2)

+(-GMMKI)0(Ul+U2)(102;0)(B31P1)(U2)

+(-GMMKI)0(Ul+U2)(304;0)(B32P2)(U2)

+(PHJI)0(ETOT,HB1)(l122;-1)(B3110)(VORU)

+(PHJI)0(ETOT,HB1)(3344;-1)(B3220)(VORU)

+(PHJI)0(ETOT,HB1)(1324;-1)(B3120)(VORU)

+(PHJI)0 (ETOT,HB1)(1324;-1 )(B3210)(VORU)
ETOT M2 4 1 T

00(EP)(2;0)(B3010)(OSRH)+00(EP)(2;O)(B31P1)(OSRH)

+00(EP)(4;0)(B3020)(OSRH)+00(EP)(4;0)(B32P2)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(B3010)(U2)

+(-GMMKI)0(UI+U2)(304;0)(B3020)(U2)

+(NF2,-GMMKI)0(U1+U2)(102;0)(B31P1)(U2)

+(NF2,-GMMKI)0(Ul+U2)(304;0)(B32P2)(U2)

+(PHJO)0(ETOT,HB1)(1122;-1)(B3110)(VORU)

+(PHJO) 0(ETOT,HB1)(3344;-1)(B3220)(VORU)

+(PHJO)0(ETOT,HB1)(1324;-1)(B3120)(VORU)

+(PHJO)0(ETOT,HB1)(1324;-1)(B3210)(VORU)
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M1 RHO 2 1 T

(GMH)00(1;0)(B201)(UVWS)+(GMH)00(3;0)(B202)(UVWS)

+00(M1)(1;0)(B3010)(UOR)+00(M1)(2;0)(B3010)(VOR)

+00(M1)(3;0)(B3020)(UOR)+00(M1)(4;0)(B3020)(VOR)

+(HBJ)0(M1,HB1)(1122;-1)(B3110)(UMOR)

+(HBJ)0(M1,HB1)(3344;-1)(B3220)(UMOR)

+(HBJ)0(M1,HB1)(1324;-1)(B3120)(UMOR)

+(HBJ)0(M1,HB1)(1324;-1)(B3210)(UMOR)
M1 RHO 3 1 T

(-) 0(M1)(1;0)(B3010)(UOR)+(-)0(M1)(2;0)(B3010)(VOR)

+(-)0(M1)(1;0)(B31P1)(UOR)+(-)0(M1)(2;0)(B31P1)(VOR)

+(-)0(M1)(3;0)(B3020)(UOR)+(-)0(M1)(4;0)(B3020)(VOR)

+(-)0(M1)(3;0)(B32P2)(UOR)+(-)0(M1)(4;0)(B32P2)(VOR)

+(PHJI)0(M1 ,HB1 )(1122;-1 )(B3110)(UMOR)

+(PHJI)0(M 1,HB1)(3344;-1)(B3220)(UMOR)

+(PHJI)0(M 1,HB1)(1324;-1)(B3120)(UMOR)

+(PHJI)0(M 1,HB1) (1324;-1)(B3210)(UMOR)
M1 RHO 4 1 T

(FX2,-GMH)00(1;0)(B201)(UVWS)+(FX2,-GMH)00(3;0)(B202)(UVWS)

+(-)0(M1)(1;0)(B3010)(UOR)+(-)0(M1)(2;0)(B3010)(VOR)

+(-)0(M1)(1;0)(B31P1)(UOR)+(-)0(M1)(2;0)(B31P1)(VOR)

+(-)0(M1)(3;0)(B3020)(UOR)+(-)()(M 1)(4;0)(B3020)(VOR)

+(-)0(M1)(3;O)(B32P2)(UOR)+(-)0(M1)(4;0)(B32P2)(VOR)

+(PHJO)0(M1,HB1)(l122;-1)(B3110)(UMOR)

+(PHJO)0(M 1,HB1)(3344;- 1)(B3220)(UMOR)
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+(PHJO)0(M1,HB1)(1324;-1)(B3120)(UMOR)
+(PHJO)0(M1,HB1)(1324;-1)(B3210)(UMOR)
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M1 ETOT 2 1 T

(GM1MK)00(1;0)(B201)0+(GM1MK)00(3;0)(B202)0
M1 ETOT 4 1 T

(FX2,-GM1MK)0 0(1;0)(B201)0+(FX2,-GMIMK)00(3;0)(B202)0

M1 M2 2 1 T

(-,GM1)00(1;0)(B201)(U2)+(-,GM1 )00(3;0)(B202)(U2)

+(-)0(M1)(2;0)(B3010)(OSRH)+(-)0(M1)(4;0)(B3020)(OSRH)

+(HBJ)0(M1,HB1)(1122;-1)(B3110)(VORU)

+(HBJ)0(M1,HB1)(3344;-1)(B3220)(VORU)

+(HBJ)0(M1,HB1)(1324;-1)(B3120)(VORU)

+(HBJ)0(M1,HB1)(1324;-1)(B3210)(VORU)
M1 M2 3 1 T

00(M1)(2;0)(B3010)(OSRH)+00(M1)(2;0)(B31P1)(OSRH)

+00(M1)(4;0)(B3020)(OSRH)+00(M1)(4;0)(B32P2)(OSRH)

+(PHJI)0(M1,HB1)(l122;-1)(B3110)(VORU)

+(PHJI)0(M1,HB1)(3344;-1)(B3220)(VORU)

+(PHJI)0(M 1,HB1)(1324;-1)(B3120)(VORU)

+(PHJI)0(M1,HB1)(1324;-1)(B3210)(VORU)
MIM24 1 T

(FX2,GM1)00(1;0)(B201)(U2)+(FX2,GM1 )00(3;0)(B202)(U2)

+00(M1)(2;0)(B3010)(OSRH)+00(M1)(2;0)(B31P1)(OSRH)

+0 0(M1)(4;0)(B3020)(OSRH)+00(M1)(4;0)(B32P2)(OSRH)

+(PHJO)0(M1,HB1)(1122;-1)(B3110)(VORU)

+(PHJO)0(M1,HB1)(3344;-1)(B3220)(VORU)

+(PHJO)0(M1,HB1)(1324;-1)(B3120)(VORU)

+(PHJO) 0(M1,HB1)(1324;-1)(B3210)(VORU)

M2 RHO 2 1 T

(GMH)00(2;0)(B201)(UVWS)+(GMH)00(4;0)(B202)(UVWS)

+00(M2)(1;0)(B3010)(UOR)+00(M2)(2;0)(B3010)(VOR)

+00(M2)(3;0)(B3020)(UOR)+00(M2)(4;0)(B3020)(VOR)

+(HBJ)0(M2,HB1)(1122;-1)(B3110)(UMOR)

+(HBJ)0(M2,HB1)(3344;-1)(B3220)(UMOR)

+(HBJ)0(M2,HB1)(1324;-1)(B3120)(UMOR)

+(HBJ)0(M2,HB1)(1324;-1)(B3210)(UMOR)
M2RHO3 1 T

(-)()(M2)(1;0)(B3010)(UOR)+(-)0(M2)(2;0)(B3010)(VOR)

+(-)0(M2)(1;0)(B31P1)(UOR)+(-)0(M2)(2;0)(B31P1)(VOR)

+(-)0(M2)(3;0)(B3020)(UOR)+(-)0(M2)(4;0)(B3020)(VOR)

+(-)0(M2)(3;0)(B32P2)(UOR)+(-)0(M2)(4;0)(B32P2)(VOR)

+(PHJI)0(M2,HB1)(1122;-1)(B3110)(UMOR)

+(PHJI)0 (M2,HB1)(3344;-1)(B3220)(UMOR)

+(PHJI)0(M2,HB 1)(1324;-1)(B3120)(UMOR)

+(PHJI)0(M2,HB1)(1324;-1)(B3210)(UMOR)
M2 RHO 4 1 T

(FX2,-GMH)0()(2;0)(B201)(UVWS)+(FX2,-GMH)00(4;0)(B202)(UVWS)

+(-)0(M2)(1;0)(B3010)(UOR)+(-)0(M2)(2;0)(B3010)(VOR)

+(-)0(M2)(1;0)(B31 P1)(UOR)+(-)0(M2)(2;0)(B31P1)(VOR)

+(-) 0(M2)(3;0)(B3020)(UOR)+(-) 0(M2)(4;0)(B3020)(VOR)

+(-) 0(M2)(3;0)(B32P2)(UOR)+(-)0(M2)(4;0)(B32P2)(VOR)

+(PHJO)0(M2,HB1)(1122;-1)(B3110)(UMOR)

+(PHJO)()(M2,HB1)(3344;-1)(B3220)(UMOR)
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+(PHJO)0(M2,HB1)(1324;-1)(B3120)(UMOR)
+(PHJO)0(M2,HB1)(1324;-1)(B3210)(UMOR)

M2ETOT 2 1 T

(GM1MK)00(2;0)(B201)0+(GM1MK)00(4;0)(B202)0
M2 ETOT 4 1 T

(FX2,-GM1MK)00(2;0)(B201)0

+(FX2,-GMIMK)00(4;0)(B202)0

M2M12 1 T

(-,GM1)00(2;0)(B201)(U1)

+(-,GM1 )00(4;0)(B202)(U1)

+(-)0(M2)(1;0) (B3010)(OSRH)

+(-)0(M2)(3;0) (B3020)(OSRH)

+(HBJ)0(M2,HB1)(1122;-1)(B3110)(UORU)

+(HBJ)0(M2,HB1)(3344;-1)(B3220)(UORU)

+(HBJ)0(M2,HB1)(1324;-1)(B3120)(UORU)

+(HBJ)0(M2,HB1)(1324;-1)(B3210)(UORU)
M2 M1 3 1 T

00(M2)(1;0)(B3010)(OSRH)+00(M2)(1;0)(B31P1)(OSRH)

+00(M2)(3;0)(B3020)(OSRH)+00(M2)(3;0)(B32P2)(OSRH)

+(PHJI)0(M2,HB1)(1122;-1)(B3110)(UORU)

+(PHJI)0(M2,HB1)(3344;-1)(B3220)(UORU)

+(PHJI)0(M2,HB1)(1324;-1)(B3120)(UORU)

+(PHJI)0(M2,HB1)(1324;-1)(B3210)(UORU)
M2M14 1 T

(FX2,GM1)00(2;0)(B201)(U1)

+(FX2,GM1 )00(4;0)(B202)(U1)

+00(M2)(1;0)(B3010)(OSRH)+00(M2)(1;0)(B31P1)(OSRH)

+00(M2)(3;0)(B3020)(OSRH)+00(M2)(3;0)(B32P2)(OSRH)

+(PHJO)0(M2,HB1) (1122;-1)(B3110)(UORU)

+(PHJO)0(M2,HB1)(3344;-1)(B3220)(UORU)

+(PHJO)0(M2,HB1)(1324;-1)(B3120)(UORU)

+(PHJO)0(M2,HB1)(1324;-1)(B3210)(UORU)

GROUP FREQUENCY
1

SOLUTION TYPE

DELTA_Q

LU_FACTORIZATION_INCOMPLETE

IMPLICIT_EULER

END
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APPENDIX B

TWS h FE REMI algorithm, d = 1,2,3

The generic element level TWS h matrix statement is:

{FQ}P =[M]e{QP+I-Qn}e+ _t( O{RQ}p+I+{RQ}n )e

with contributions

[M]e {QP+I -Qn }e = J_e {N}{N}T d'c{QP+ 1 -Qn }e

(5.43)

(5.4)

{RQ}e =-_e O{N} (fJ - f JV -_hujhk3xj_, _x koqle d'c

(5.5)

+_3f_e{N} fj-fy-_hujh k _x k e_j d_

For _=O=y in the TWS h procedure, (5.4) is universal for all {Q} in the form

[M]e {QP+I-Qn }e = [M200E]{QP+I-Qn }e (5.44)

All surface integrals created in the residual (5.5) are handled as discussed, hence

the residual expressions contain only terms on the generic FE domain f2 e

{RR}e =-[M2JO]e{MJ} e +_ROKe{Uj}T[M3OKJ]e{RHO}e (5.45)

{RE}e = -{uj}T[M30J0]e {ETOT +(Eu / Ec)PRES}e

+ pe-I[M2KK]e{TEMP}+_eOK{uj}T[M3OKJ]e{ETOT}e
(5.46)

{RM1}e = -{uj}T[M3OJO]e{M1}e + Eu[M201]e {PRES} e

+Re-I[M2KK]e {U1}e + Re-1[M21K]e{UK/3} e

+[_lOKe {uj} T [MBOKJ]e { M1} e

(5.47)

{RM2} e =-{uj}T[M3OJO]e{M2}e + Eu[M202]e {PRES} e

+Re-I[M2KKle{U2}e + Re-1[M22K]e{UK /3} e

+[320K e {UJ} T[MBOKJ]e {M2} e
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{RM3}e = -{uj}T[M3OJO]e{M3}e + Eu[M203]e {PRES} e

+Re-I[M2KK]e {U3}e + Re-1[M23K]e {UK/3}e

+_30Ke {uj} T[MgOKJ]e {M3 }e

APPENDIX B

(5.49)

The Newton jacobian (5.11) is constructed as the assembly of:

[JAC]e - 3{FQ}e _[M]e +OAt 3{RQ}e

3{Q} e 3{Q} e

(5.12)

The [M]e term is common to all residuals. All other derivatives of {Q}e require use of

the chain rule.

The density jacobians are:

3{RR} e

a{RHO} e

-[RR, R]e =  ROKe {uj}T[M3OKJ]e

-2_IR UKe {RHo}T [M3 JKO]e[UJ/RHOJ e (5.52)

[RR, MI]e =[M210] e + 2_ROKe{RHo}T[M3KJO]e[OSRHJe (5.55)

Since 'T' is a free tensor index in (5.55), there are d expressions.

The energy jacobians are:

[RE, E]e = -{uj}T[M3OJO]e -('y- 1){uj}T[M3OJO]e

+ (y_ 1)Ec [M2KK]e[_OSRHje +_EOKe{Uj}T[M3OKj] e (5.59)
PeEu

[RE, R]e = {ETOT +(Ec / Eu)PRES}:[M3OJO]eFUJSRJ e

+ (T- 1) {uj}T[MBOjO] e [UKUKje___e[MaKK]e FTSRHj e
2Ec

-2 _ E 0 Ke {ETOT }T [M3 JK 0 ]e [ U JSR.]e (5.64)
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[RE,M/]e- (1-1) {uI}T[M3OIO]e[UIle
Ec

-{ETOT +(Eu /Ec)PREs}T[MB010]e[OSRH]e

-( 7 - 1) [M2KK ]e[UISRJe+ 2 UKe {ETOT }T [ M3 K/0]e[OSRHJe
PeEu

The momentum jacobians are:

[RMI,R]e ={MI}T[M30J0]e[UJSR]e + (T-1)[M2OI]e[UKUK]e
2

-1-_-[M2KK]e [UISR] e -1---_-[Malg]e [UKSR] e
Re 3Re

-2_IOKe{MI}T[M3JKO]e [UJSRJe

[RMI,E]e = Eu[M20I]e
3{PRES} e

3{ETOT} e

= (7-1)Ec[M20I]e

The self-coupling jacobian contributions are

[RM/, M/]e = -{uj}T[M3OJO]e -{M/} T {M30/0}e[OSRH] e

-(7-1)[M20/]e[U/] e + I-!-[M2KK]e [OSRH] e
Re

+---_1 [M2//]e [OSRH] e +_IOKe {uI}T[M3OKJ]e
3Re

+f3If.JKe{MI}T[M3IKO]e [OSRH] e

(5.68)

(5.70)

(5.71)

(5.73)

The non-self coupled jacobians are:

[RMI,MI]e =-{M/}T[M30J0]e [OSRH]e

-(7-1)[M2OI]e[UJ]e +--_--1 [M2/J]e [OSRH]e
3Re

+2_/OKe {MI} T[MBJK0]e [OSRH] e (5.74)
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APPENDIX C

AKCESS.AERO template, d=2 quasi-Newton jacobian

INTEGRATION FACTORS

INITIAL_TIME

FINAL_TIME

PROBLEM_CONVERGENCE_CRITERIA

MAXIMUM_CHANGE_IN_Q__(DQ)

INITIAL_TIME_STEP

TIME_STEPMULTIPLIER

MAXIMUM_TIME_STEP

CRITERIA_TO_RAISE_MAX_TIME_STEP

MAXIMUM_NUMBER OF STEPS

MAXIMUM_NUMBER OF ITERATIONSPER_STEP

ITERATION_CONVERGENCE_CRITERIA

THETA IMPLICITNESS_FACTOR

MAXIMUM_VALUE OF ANY_DELTA_Q

TRANSFORMATION ARRAYS

ETKJ 1.

DETJ 1.
# DETE 0.

BOUNDARY CONDITIONS

RHO

DIR_RT

DIR_M1

DIR_M2

NO_SLIP

DIR_PRS

THR_IN [3
THR_OUT

BLANK

ETOT M1 M2 PRSC # ORDER

D D 0 0 0 #DIRICHLET

0 0 D 0 0 #DIRICHLET

0 0 0 D 0 #DIRICHLET

0 0 D D 0 # NO SLIP WALL

0 0 0 0 D #DIRICHLET

-3] [3-31 [3 -3] [3 -3] 0 #THROUGH FLOW

[4-41 [4-41 [4-4] [4-4] 0 # THROUGH FLOW
D D D D D # NO SLIP WALL

TITLE **** TEMPLATE FILE TEMP.CNS2D.REMI ****

CNS2D TWS ALGORITHM, TENSOR MATRIX A JACOBIANS (12/23/93)

RESIDUALS

RHO 1 # VARIABLE, SET NO., --- [M] * {[RHO.NEW] - [RHO.OLD]}

000(;1)(B200)(-RHO)
RHO 2 # VARIABLE, SET NO., --- {RQ} = [V]{Q} + [D]{Q} + [DB]{Q}

(-)0(Ul+U2)(102;0)(B3010)(RHO)

+(-)0(U1 +U2)(304;0)(B3020)(RHO)

+(HBR)0(UMAG,HB1)(l122;-1)(B3011)(RHO)

+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(RHO)

+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(HBR)0(UMAG,HB1) (1324;-1)(B3012)(RHO)
RHO 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

()0(U1 +U2)(102;0)(B3010)(RHO)

+()0(U1 +U2) (304;0)(B3020)(RHO)

+00(U1+U2)(102;0)(B31P1)(RHO)
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+00(U1 +U2)(304;0)(B32P2)(RHO)

+(PHRI)0(UMAG,HB1)(1122;-1)(B3011)(RHO)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(RHO)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(RHO)
RHO 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1 +U2)(102;0)(B3010)(RHO)

+00(U1+U2)(304;0)(B3020)(RHO)

+00(U1+U2)(102;0)(B31P1)(RHO)

+00(Ul+U2)(304;0)(B32P2)(RHO)

+(PHRO)0(UMAG,HB1 )(1122;-1)(B3011 )(RHO)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(RHO)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(RHO)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3012)(RHO)

ETOT 1 # VARIABLE, SET NO.,--- [M] * I[ETOT.NEW] - [ETOT.OLD]}

000(;1)(B200)(-ETOT)
ETOT 2 # VARIABLE, SET NO., --- {RQ} = [VI{Q} + [DIIQ} + [DB]{Q}

(-)0(U1+U2)(102;0)(B3010)(EP)

+(-)0(U1+U2)(304;0)(B3020)(EP)

+(PDUM2,PEI)00(1122;-1)(B211)(TEMP)

+(PDUM2,PEI)00(3344;-1)(B222)(TEMP)

+(PDUM2,PEI)00(1324;-1)(B221)(TEMP)

+(PDUM2,PEI)00(1324;-1)(B212)(TEMP)

+(HBR)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(HBR)0(UMAG,HB1) (3344;-1)(B3022)(ETOT)

+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(ETOT)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)
ETOT 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

00(Ul+U2)(102;0)(B3010)(EP)

+00(U1+U2)(304;0)(B3020)(EP)

+00(U1+U2)(102;0)(B31P1)(EP)

+00(U1+U2)(304;0)(B32P2)(EP)

+(PHRI)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(ETOT)

+ (PHRI)0(UMAG,HB1) (1324;-1)(B3021)(ETOT)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)
ETOT 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U 1+U2)(102;0)(B3010)(EP)

+00(U1+U2)(304;0)(B3020)(EP)

+()0(U1+U2)(102;0)(B31P1)(EP)

+00(U1+U2)(304;0)(B32P2)(EP)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(ETOT)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(ETOT)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(ETOT)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3012)(ETOT)

M1 1 # VARIABLE, SET NO.,-°- [M] * {[M1.NEW]- [M1.OLD]}

000(;1)(B200)(-M1)
M1 2 # VARIABLE, SET NO.,--- {RQ} = [V]{Q} + [D]IQ} + [DB]{Q}

(-)0(U1+U2)(102;0)(B3010)(M1)

+(-)0(U1 +U2)(304;0)(B3020)(M 1)
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+(EULER)00(1;0)(B201)(PRSC)

+(EULER)00(3;0)(B202)(PRSC)

+(PDUM2,REI)00(1122;-1)(B211)(U1)

+(PDUM2,REI)00(3344;-1)(B222)(U1)

+(PDUM2,REI)00(1324;-1)(B221)(U1)

+(PDUM2,REI)00(1324;- 1)(B212)(U1)

+(HBR)0(UMAG,HB1)(1122;-1)(B3011)(M1)

+(HBR)0(UMAG,HB1)(3344;-1)(B3022)(M1)

+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(M1)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(M1)

M1 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

+00(U1+U2)(102;0)(B3010)(M1)

+00(U1+U2)(304;0)(B3020)(M1)

+00(Ul+U2)(102;0)(B31P1)(M1)

+00(U1+U2)(304;0)(B32P2)(M1)

+(PHRI)0(UMAG,HB1)(l122;-1)(B3011)(M1)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(M1)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(M 1)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(M1)

M1 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(M1)

+00(U1+U2)(304;0)(B3020)(M1)

+00(U1+U2)(102;0)(B31P1)(M1)

+00(U1+U2)(304;0)(B32P2)(M1)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(M1)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(M1)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(M1)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3012)(M1)

M2 1 # VARIABLE, SET NO., --- [M] * {[M2.NEW] - [M2.OLD]}

000(;1)(B200)(-M2)

M2 2 # VARIABLE, SET NO., --- {RQ} = [V]{Q} + [D]{Q} + [DB]{Q}

(-)0(U1+U2)(102;0)(B3010)(M2)

+(-)0(U1+U2)(304;0)(B3020)(M2)

+(EULER)00(2;0)(B201)(PRSC)

+(EULER)00(4;0)(B202)(PRSC)

+(PDUM2,REI)00(l122;-1)(B211)(U2)

+(PDUM2,REI)00 (3344;-1)(B222)(U2)

+(PDUM2,REI)00(1324;-1)(B221)(U2)

+(PDUM2,REI)00(1324;-1)(B212)(U2)

+(HBR)0(UMAG,HB1)(1122;-1)(B3011)(M2)

+(HBR)0(UMAG,HB1)(3344;- 1)(B3022)(M2)

+(HBR)0(UMAG,HB1)(1324;-1)(B3021)(M2)

+(HBR)0(UMAG,HB1)(1324;-1)(B3012)(M2)

M2 3 # VARIABLE, SET NO., --- INFLOW BOUNDARY SET FOR {RQ}

+00(U1+U2)(102;0) (B3010)(M2)

+00(U1 +U2)(304;0) (B3020)(M2)

+00(U1 +U2)(102;0)(B31P1)(M2)

+00(U1 +U2)(304;0)(B32P2) (M2)

+(PHRI)0(UMAG,HB1)(1122;-1)(B3011)(M2)

+(PHRI)0(UMAG,HB1)(3344;-1)(B3022)(M2)

+(PHRI)0(UMAG,HB1)(1324;-1)(B3021)(M2)
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+(PHRI)0(UMAG,HB1)(1324;-1)(B3012)(M2)
M2 4 # VARIABLE, SET NO., --- OUTFLOW BOUNDARY SET FOR {RQ}

00(U1+U2)(102;0)(B3010)(M2)

+00(U1+U2)(304;0)(B3020)(M2)

+00(Ul+U2)(102;0)(B31P1)(M2)

+00(U1+U2)(304;0)(B32P2)(M2)

+(PHRO)0(UMAG,HB1)(1122;-1)(B3011)(M2)

+(PHRO)0(UMAG,HB1)(3344;-1)(B3022)(M2)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3021)(M2)

+(PHRO)0(UMAG,HB1)(1324;-1)(B3012)(M2)
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JACOBIANS
#

# FACTORED JACOBIAN FOR DIRECTION 1 #
#

RHO RHO 1 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1 #

000(;0)(A200)(DETJ)
RHO RHO 2 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1 #

(-)0(U1+U2)(102;0)(A3010)0

+00(RHO)(1;0)(A3010)(UOR)+00(RHO)(2;0)(A3010)(VOR)

+(-,HBJ)0(RHO,HB1)(1122;0)(A3110)(DETC,UMOR)

+(HBJ)0(UMAG,HB1)(1122;0)(A3011)(DETC)

RHO RHO 3 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1 #

00(Ul+U2)(102;0)(A3010)0+00(U1+U2)(102;0)(A31P1)0

+(-)0(RHO)(1;0)(A3010)(UOR)+(-)0(RHO)(1;0)(A31P1)(UOR)

+(-)0(RHO)(2;0)(A3010)(VOR)+(-)0(RHO)(2;0)(A31P1)(VOR)

+(-,PHJI)0(RHO,HB1)(l122;0)(A3110)(DETC,UMOR)

+(PHJI)0(UMAG,HB1)(l122;0)(A3011)(DETC)
RHO RHO 4 1 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 1 #

00(U1+U2)(102;0)(A3010)0+00(U1+U2)(102;0)(A31P1)0

+(-)0(RHO)(1;0)(A3010)(UOR)+(-)0(RHO)(1;0)(A31P1)(UOR)

+(-)()(RHO)(2;0)(A3010)(VOR)+(-)0(RHO)(2;0)(A31P1)(VOR)

+(-,PHJO)0(RHO, HB1)(1122;0)(A3110)(DETC,UMOR)

+(PHJO)0(UMAG,HB1)(1122;0)(A3011)(DETC)

ETOTETOT 1 1 #

000(;0)(A200)(DETJ)
ETOTETOT 2 1 #

(-)0(Ul+U2)(102;0)(A3010)0

+(-GM1)0(Ul+U2)(102;0)(A3010)0

+(PDUM2,PEI)00(l122;-1)(A211)0

+(HBJ)0(UMAG,HB1)(1122;0)(A3011)(DETC)
ETOTETOT 3 1 #

00(U1+U2)(102;0)(A3010)0+00(Ul+U2)(102;0)(A31P1)0

+(GM1)0(U1+U2)(102;0)(A3010)0+(GM1)0(U1+U2)(102;0)(A31P1)0

+(PHJI)0(UMAG,HB1)(1122;0)(A3011)(DETC)
ETOT ETOT 4 1 #

00(U1+U2)(102;0)(A3010)0+00(Ul+U2)(102;0)(A31P1)0

+(GM1)0(UI+U2)(102;0)(A3010)0+(GM1)0(U1 +U2)(102;0)(A31P1)0

+(PHJO)0(UMAG,HB1)(1122;0)(A3011)(DETC)

M1 M1 1 1 #

000(;0)(A200)(DETJ)
M1 M1 2 1 #

(-GM1)00(1;0)(A201)(U1)

+(-)0(M1)(1;0)(A3010)(OSRH)

+(-)0(Ul+U2)(102;0)(A3010)0

+(PDUM2,REI)0(OSRH)(l122;-1)(A3011)0

+(HBJ)0(M1,HB1)(l122;0)(A3110)(DETC,UORU)

+(HBJ)0(UMAG,HB1)(l122;O)(A3011)(DETC)
M1 M1 3 1 #

00(M1)(1;0)(A3010)(OSRH)+()0(M1)(1;0)(A31P1)(OSRH)

+00(U1 +U2)(102;0)(A3010)0+0()(Ul+U2)(102;0)(A31P1)0
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+(PHJI)0(M1,HB1)(1122;0)(A3110)(DETC,UORU)

+(PHJI)0(UMAG,HB1)(1122;0)(A3011)(DETC)
M1 M1 4 1 #

(FX2,GM1)00(1;0)(A201)(U1)

+00(M1)(1;0)(A3010)(OSRH)+00(M1)(1;0)(A31P1)(OSRH)

+00(Ul+U2)(102;0)(A3010)0+00(Ul+U2)(102;0)(A31P1)0

+(PHJO)0(M1,HB1)(1122;0)(A3110)(DETC,UORU)

+(PHJO)0(UMAG,HB1)(1122;0)(A3011)(DETC)

M2 M2 1 1 #

000(;0)(A200)(DETJ)
M2 M2 2 1 #

+(-GM1 )00(2;0)(A201)(U2)

+(-)0(M2)(2;0)(A3010)(OSRH)

+(-)0(U1+U2)(102;0)(A3010) 0

+(PDUM2,REI)0(OSRH)(1122;-1)(A3011)0

+(HBJ)0(M2,HB1)(1122;0)(A3110)(DETC,VORU)

+(HBJ)0(UMAG,HB1)(1122;0)(A3011)(DETC)
M2 M2 3 1 #

00(M2)(2;0)(A3010)(OSRH)+00(M2)(2;0)(A31P1)(OSRH)

+00(U1+U2)(102;0)(A3010)0+00(U1+U2)(102;0)(A31P1)0

+(PHJI)0(M2,HB1)(1122;0)(A3110)(DETC,VORU)

+(PHJI)0(UMAG,HB1)(1122;0)(A3011)(DETC)
M2 M2 4 1 #

(FX2,GM1)00(2;O)(A201)(U2)

+00(M2)(2;0)(A3010)(OSRH)+00(M2)(2;0)(A31P1)(OSRH)

+00(U1+U2)(102;0)(A3010)0+00(U1+U2)(102;0)(A31P1)0
+(PHJO)0(M2,HB1)(1122;0)(A3110)(DETC,VORU)

+(PHJO)0(UMAG,HB1)(l122;0)(A3011)(DETC)

RHO M1 2 1 #

(-)0(RHO)(1;0)(A3010)(OSRH)

+(HBJ)0(RHO, HB1)(1122;0)(A3110)(DETC,UORU)
RHO M1 3 1 #

00(RHO)(1;0)(A3010)(OSRH)+00(RHO)(1;0)(A31P1)(OSRH)
+(PHJI)0(RHO,HB1)(1122;0)(A3110)(DETC,UORU)

RHO M1 4 1 #

00(RHO)(1;0)(A3010)(OSRH)+00(RHO)(1;0)(A31P1)(OSRH)

+(PHJO)0(RHO, HB1)(1122;0)(A3110)(DETC,UORU)

RHO M2 2 1

(-)0(RHO)(2;0)(A3010)(OSRH)

+(HBJ)0(RHO,HB1)(1122;0)(A3110)(DETC,VORU)
RHO M2 3 1 #

00(RHO)(2;0)(A3010)(OSRH)+00(RHO)(2;0)(A31P1)(OSRH)

+(PHJI)0(RHO, HB1)(1122;0)(A3110)(DETC,VORU)
RHO M2 4 1 #

00(RHO)(2;0)(A3010)(OSRH)+00(RHO)(2;0)(A31P1)(OSRH)

+(PHJO) 0(RHO,HB1)(l122;0)(A3110)(DETC,VORU)

ETOT RHO 2 1 #
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00(EP)(1;0)(A3010)(UOR)+00(EP)(2;0)(A3010)(VOR)

+(HGMMKI)0(UI+U2)(102;0)(A3010)(UVWS)

+(HBJ)0(ETOT, HB1)(1122;0)(A3110)(DETC,UMOR)
ETOT RHO 3 1 #

(-)0(EP)(1;0)(A3010)(UOR)+(-)0(EP)(1;0)(A31P1)(UOR)

+(-)0(EP)(2;0)(A3010)(VOR)+(-)0(EP)(2;0)(A31P1)(VOR)

+(-,HGMMKI)0(Ul+U2)(102;0)(A3010)(UVWS)

+(-,HGMMKI)0(U1+U2)(102;0)(A31P1)(UVWS)

+(PHJI)0(ETOT, HB1)(1122;0)(A3110)(DETC,UMOR)
ETOT RHO 4 1 #

(-)0(EP)(1;0)(A3010)(UOR)+(-)0(EP)(1;0)(A31P1)(UOR)

+(-)0(EP)(2;0)(A3010)(VOR)+(-)0(EP)(2;0)(A31P1)(VOR)

+(-,HGMMKI)0(UI+U2)(102;0)(A3010)(UVWS)

+(NF2,-,HGMMKI)0(U1+U2)(102;0)(A31P1)(UVWS)

+(PHJO)0(ETOT, HB1)(l122;0)(A3110)(DETC,UMOR)

ETOT M1 2 1 #

(-)0(EP)(1;0)(A3010)(OSRH)

+(GMMKI)0(U1 +U2)(102;0)(A3010)(U1)

+(HBJ)0(ETOT,HB1)(1122;0)(A3110)(DETC,UORU)
ETOT M1 3 1 #

00(EP)(1;0)(A3010)(OSRH)+00(EP)(1;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(A3010)(U1)

+(-GMMKI)0(U l+U2)(102;0)(A31P1)(U1)

+(PHJI)0(ETOT,HB1) (1122;0)(A3110)(DETC,UORU)
ETOT M1 4 1 #

00(EP)(1;0)(A3010)(OSRH)+00(EP)(1;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(A3010)(U1)

+(NF2,-GMMKI)0(Ul+U2)(102;0)(A31P1)(U1)

+(PHJO)0(ETOT, HB1)(1122;0)(A3110)(DETC,UORU)

ETOT M2 2 1 #

(-)0(EP)(2;0)(A3010)(OSRH)

+(GMMKI)0(UI+U2)(102;0)(A3010)(U2)

+(HBJ)0(ETOT,HB1)(l122;0)(A3110)(DETC,VORU)
ETOT M2 3 1 #

00(EP)(2;0)(A3010)(OSRH)+00(EP)(2;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(102;0)(A3010)(U2)

+(-GMMKI)0(U1+U2)(102;0)(A31P1)(U2)

+(PHJI)0(ETOT,HB1)(l122;0)(A3110)(DETC,VORU)
ETOT M2 4 1 #

()0(EP)(2;0)(A3010)(OSRH)+00(EP)(2;0)(A31P1)(OSRH)

+(-GMMKI)0(U 1+U2)(102;0)(A3010)(U2)

+(NF2,-GMMKI)0(U1 +U2)(102;0)(A31P1)(U2)

+(PHJO)0(ETOT, HB1)(1122;0)(A3110)(DETC,VORU)

M1 RHO 2 1 #

(GMH)00(1 ;0)(A201)(UVWS)

+00(M1)(1;0)(A3010)(UOR)+00(M1)(2;0)(A3010)(VOR)

+ (HBJ)0(M1,HB1)(1122;0)(A3110)(DETC,UMOR)
M1 RHO 3 1 #
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(-)0(M1)(1;0)(A3010)(UOR)+(-)0(M1)(1;0)(A31P1)(UOR)
+(-)0(M1)(2;0)(A3010)(VOR)+(-)0(M1)(2;0)(A31P1)(VOR)
+(PHJI)0(M1,HB1)(1122;0)(A3110)(DETC,UMOR)
M1 RHO 4 1 #
(FX2,-GMH)00(1;0)(A201)(UVWS)
+(-)0(M1)(1;0)(A3010)(UOR)+(-)0(M1)(1;0)(A31P1)(UOR)
+(-)0(M1)(2;0)(A3010)(VOR)+(-)0(M1)(2;0)(A31P1)(VOR)
+(PHJO)0(M1,HB1)(1122;0)(A3110)(DETC,UMOR)

M1 ETOT 2 1 #

(GM1MK)00(1;0)(A201)0

M1 ETOT 4 1 #

(FX2,-GM1MK)00(1;0)(A201)0

M1 M2 2 1 #

(-GM1)00(1;0)(A201)(U2)

+(-)0(M1)(2;0)(A3010)(OSRH)

+(HBJ)0(M1,HB1)(1122;0)(A3110)(DETC,VORU)
M1 M2 3 1 #

00(M1)(2;0)(A3010)(OSRH)+00(M1)(2;0)(A31P1)(OSRH)

+(PHJI)0(M1,HB1)(1122;0)(A3110)(DETC,VORU)
M1 M2 4 1 #

(FX2,GM1)00(1;0)(A201)(U2)

+00(M1)(2;0)(A3010)(OSRH)+00(M1)(2;0)(A31P1)(OSRH)

+(PHJO)0(M1,HB1)(l122;O)(A3110)(DETC,VORU)

M2 RHO 2 I #

(GMH)00(2;0)(A201)(UVWS)

+00(M2)(1;0)(A3010)(UOR)+00(M2)(2;0)(A3010)(VOR)

+(HBJ)0(M2,HB1)(1122;0)(A3110)(DETC,UMOR)
M2 RHO 3 1 #

(-)0(M2)(1;0) (A3010)(UOR)+(-)0(M2)(1;0)(A31P1)(UOR)

+(-)0(M2)(2;0)(A3010)(VOR)+(-)0(M2)(2;0)(A31P1)(VOR)

+(PHJI)0(M2,HB1)(1122;0)(A3110)(DETC,UMOR)
M2 RHO 4 1 #

(FX2,-GMH)00(2;0)(A201)(UVWS)

+(-)0(M2)(1;0)(A3010)(UOR)+(-)0(M2)(1;0)(A31P1)(UOR)

+(-)0(M2)(2;0)(A3010)(VOR)+(-)0(M2)(2;0)(A31P1)(VOR)

+(PHJO)0(M2,HB1)(1122;0)(A3110)(DETC,UMOR)

M2 ETOT 2 1 #

(GM1MK)0()(2;0)(A201)0
M2 ETOT 4 1 #

(FX2,-GM 1MK)00(2;0)(A201)0

M2 M1 2 1 #

(-GM1)00(2;0)(A201)(U1)

+(-)0(M2)(1 ;0)(A3010)(OSRH)

+(HBJ)0(M2,HB1)(1122;0)(A3110)(DETC,UORU)
M2 M1 3 1 #

00(M2)(1;0)(A3010)(OSRH)+00(M2)(1;0)(A31P1)(OSRH)

+(PHJI)0(M2,HB1)(1122;0)(A3110)(DETC,UORU)

144



APPENDIXC

M2M14 1#
(FX2,GM1)00(2;0)(A201)(U1)
+00(M2)(1;0)(A3010)(OSRH)+00(M2)(1;0)(A31P1)(OSRH)
+(PHJO)0(M2,HB1)(l122;0)(A3110)(DETC,UORU)
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JACOBIANS
#

# FACTORED JACOBIAN FOR DIRECTION 2 #
#

RHO RHO 1 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2 #

000(;0)(A200)(DETJ)
RHO RHO 2 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2 #

(-)0(Ul+U2)(304;0) (A3010)0

+00(RHO)(3;0)(A3010)(UOR)+00(RHO)(4;0)(A3010)(VOR)

+(-,HBJ)0(RHO,HB1)(3344;0)(A3110)(DETC,UMOR)

+(HBJ)0(UMAG,HB1)(3344;O)(A3011)(DETC)
RHO RHO 3 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2 #

00(U1 +U2)(304;0)(A3010)0+00(U1 +U2)(304;0)(A31P1)0

+(-)0(RHO)(3;0)(A3010)(UOR)+(-)0(RHO)(3;0)(A31P1)(UOR)

+(-)0(RHO)(4;0)(A3010)(VOR)+(-)0(RHO)(4;0)(A31P1)(VOR)

+(-,PHJI)0(RHO,HB1)(3344;0)(A3110)(DETC,UMOR)

+(PHJI)0(UMAG,HB1)(3344;0)(A3011)(DETC)
RHO RHO 4 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2 #

00(U1+U2)(304;0)(A3010)0+00(U1 +U2)(304;0)(A31P1)0

+(-)0(RHO)(3;0)(A3010)(UOR)+(-)0(RHO)(3;0)(A31P1)(UOR)

+(-)0(RHO)(4;0)(A3010)(VOR)+(-)0(RHO)(4;0)(A31P1)(VOR)

+(-,PHJO)0(RHO,HB1)(3344;0)(A3110)(DETC,UMOR)

+(PHJO)0(UMAG,HB1)(3344;0)(A3011)(DETC)

ETOTETOT 1 2 #

000(;0)(A200)(DETJ)
ETOTETOT 2 2 #

(-)0(Ul+U2)(304;0)(A3010)0

+(-GM1)0(Ul+U2)(304;0)(A3010)0

+(PDUM2,PEI)00(3344;-1)(A211)0

+(HBJ)0(UMAG,HB1)(3344;0)(A3011)(DETC)
ETOTETOT 3 2 #

00(U1+U2)(304;0)(A3010)0+00(Ul+U2)(304;0)(A31P1)0

+(GM1)0(U1+U2)(304;O)(A3010)0+(GM1)0(Ul+U2)(304;0)(A31P1)0

+(PHJI)()(UMAG,HB1)(3344;0)(A3011)(DETC)
ETOTETOT 4 2 #

00(U1+U2)(304;0)(A3010)0+00(U1+U2)(304;0)(A31P1)0

+(GM1)0(U1+U2)(304;0)(A3010)0+(GM1)0(Ul+U2)(304;0)(A31P1)0

+(PHJO)0(UMAG,HB1)(3344;0)(A3011)(DETC)

M1 M1 1 2 #

000(;0)(A200)(DETJ)
M1 M1 2 2 #

+(-GM1 )00(3;0)(A201)(U1)

+(-)0(M1)(3;0)(A3010)(OSRH)

+(-)0(U1+U2)(304;0)(A3010)0

+(PDUM2,REI)0 (OSRH)(3344;-1)(A3011)0

+(HBj)0(M1,HB1)(3344;0)(A3110)(DETC,UORU)

+(HBJ)0(UMAG,HB1)(3344;0)(A3011)(DETC)
M1 M1 3 2 #

00(M1)(3;0)(A3010)(OSRH)+()0(M1)(3;0)(A31P1)(OSRH)
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+00(U1+U2)(304;0)(A3010)0+00(U1+U2)(304;0)(A31P1)0
+(PHJI)0(M1,HB1)(3344;0)(A3110)(DETC,UORU)
+(PHJI)0(UMAG,HB1)(3344;0)(A3011)(DETC)
M1 M1 4 2 #
(FX2,GM1)00(3;0)(A201)(U1)
+00(M1)(3;0)(A3010)(OSRH)+00(M1)(3;0)(A31P1)(OSRH)
+00(U1+U2)(304;0)(A3010)0+00(U1+U2)(304;0)(A31P1)0
+(PHJO)0(M1,HB1)(3344;0)(A3110)(DETC,UORU)
+(PHJO)0(UMAG,HB1)(3344;0)(A3011)(DETC)

M2 M21 2 #
000(;0)(A200)(DETJ)
M2 M22 2 #

+(-GM1)00(4;0)(A201)(U2)
+(-)0(M2)(4;0)(A3010)(OSRH)
+(-)0(Ul+U2)(304;0)(A3010)0
+(PDUM2,REI)0(OSRH)(3344;-1)(A3011)0
+(HBJ)0(M2,HB1)(3344;0)(A3110)(DETC,VORU)
+(HBJ)0(UMAG,HB1)(3344;0)(A3011)(DETC)
M2 M2 3 2 #
00(M2)(4;0)(A3010)(OSRH)+00(M2)(4;0)(A31P1)(OSRH)
+00(U1+U2)(304;0)(A3010)0+00(Ul+U2)(304;0)(A31P1)0
+(PHJI)0(M2,HB1)(3344;0)(A3110)(DETC,VORU)
+(PHJI)0(UMAG,HB1)(3344;0)(A3011)(DETC)
M2 M2 4 2 #
(FX2,GM1)00(4;0)(A201)(U2)
+00(M2)(4;0)(A3010)(OSRH)+00(M2)(4;0)(A31P1)(OSRH)
+00(U1+U2)(304;0)(A3010)0+00(U1+U2)(304;0)(A31P1)0
+(PHJO)0(M2,HB1)(3344;0)(A3110)(DETC,VORU)
+(PHJO)0(UMAG,HB1)(3344;0)(A3011)(DETC)

RHOM1 2 2 #
(-)0(RHO)(3;0)(A3010)(OSRH)
+(HBJ)0(RHO,HB1)(3344;0)(A3110)(DETC,UORU)
RHO M1 3 2 #
00(RHO)(3;0)(A3010)(OSRH)+00(RHO)(3;0)(A31P1)(OSRH)
+(PHJI)0(RHO,HB1)(3344;0)(A3110)(DETC,UORU)
RHO M1 4 2 #
00(RHO)(3;0)(A3010)(OSRH)+00(RHO)(3;0)(A31P1)(OSRH)
+(PHJO)0(RHO,HB1)(3344;0)(A3110)(DETC,UORU)

RHO M2 2 2 #

(-)0(RHO)(4;0)(A3010)(OSRH)

+ (HBJ)0(RHO,HB1)(3344;0)(A3110)(DETC,VORU)
RHO M2 3 2 #

()0 (RHO)(4;0)(A3010)(OSRH)+00(RHO)(4;0)(A31P1)(OSRH)

+(PHJI)0(RHO,HB1)(3344;0)(A3110)(DETC,VORU)
RHO M2 4 2 #

00(RHO)(4;0)(A3010)(OSRH)+00(RHO)(4;0)(A31P1)(OSRH)

+(PHJO)0(RHO,HB1)(3344;0)(A3110)(DETC,VORU)
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ETOT RHO 2 2 #

00(EP)(3;0)(A3010)(UOR)+00(EP)(4;0)(A3010)(VOR)

+(HGMMKI)0(U1 +U2)(304;0)(A3010)(UVWS)

+(HBJ)0 (ETOT,HB1)(3344;0)(A3110)(DETC,UMOR)

ETOT RHO 3 2 #

(-)0(EP)(3;0)(A3010)(UOR)+(-)0(EP)(3;0)(A31P1)(UOR)

+(-)0(EP)(4;0)(A3010)(VOR)+(-)0(EP)(4;0)(A31P1)(VOR)

+(-,HGMMKI)0(UI+U2)(304;0)(A3010)(UVWS)

+(-,HGMMKI)0(U1+U2)(304;0)(A31P1)(UVWS)

+(PHJI)0(ETOT, HB1)(3344;0)(A3110)(DETC,UMOR)
ETOT RHO 4 2 #

(-)0(EP)(3;0)(A3010)(UOR)+(-)0(EP)(3;0)(A31P1)(UOR)

+(-)0(EP)(4;0)(A3010)(VOR)+(-)0(EP)(4;0)(A31P1)(VOR)

+(-,HGMMKI)0(UI+U2)(304;0)(A3010)(UVWS)

+(NF2,-,HGMMKI)0(Ul+U2)(304;0)(A31P1)(UVWS)

+(PHJO)0(ETOT, HB1)(3344;0)(A3110)(DETC,UMOR)

ETOT M1 2 2 #

(-)0(EP)(3;0)(A3010)(OSRH)

+(GMMKI)0(UI+U2)(304;0)(A3010)(U1)

+(HBJ)0(ETOT,HB1)(3344;0)(A3110)(DETC,UORU)
ETOT M1 3 2 #

00(EP)(3;0)(A3010)(OSRH)+00(EP)(3;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(304;0)(A3010)(U1)

+(-GMMKI)0(U1+U2)(304;0)(A31P1)(U1)
+(PHJI)0(ETOT, HB1)(3344;0)(A3110)(DETC,UORU)

ETOT M1 4 2 #

00(EP)(3;0)(A3010)(OSRH)+00(EP)(3;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(304;0)(A3010)(U1)

+(NF2,-GMMKI)0(U1+U2)(304;0)(A31P1)(U1)

+(PHJO)0(ETOT,HB1)(3344;0)(A3110)(DETC,UORU)

ETOT M2 2 2 #

(-)0(EP)(4;0)(A3010)(OSRH)

+(GMMKI)0(UI+U2)(304;0)(A3010)(U2)

+(HBJ)0(ETOT,HB1)(3344;0)(A3110)(DETC,VORU)
ETOT M2 3 2 #

00(EP)(4;0)(A3010)(OSRH)+00(EP)(4;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2)(304;0)(A3010)(U2)

+(-GMMKI)0(U1+U2)(304;0)(A31P1)(U2)

+(PHJI)0(ETOT,HB1)(3344;0)(A3110)(DETC,VORU)
ETOT M2 4 2 #

00(EP)(4;0)(A3010)(OSRH)+00(EP)(4;0)(A31P1)(OSRH)

+(-GMMKI)0(U 1+U2)(304;0)(A3010)(U2)

+(NF2,-GMMKI)0(U1 +U2)(304;0)(A31P1)(U2)

+(PHJO)0(ETOT,HB1)(3344;0)(A3110)(DETC,VORU)

M1 RHO 2 2 #

(GMH)00(3;0)(A201)(UVWS)

+00(M1)(3;0)(A3010)(UOR)+00(M1)(4;0)(A3010)(VOR)

+(HBJ)0(M1,HB1)(3344;0)(A3110)(DETC,UMOR)
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M1 RHO3 2#

(-)0(M1)(3;0)(A3010)(UOR)+(-)0(M1)(3;0)(A31P1)(UOR)

+(-)0(M1)(4;0)(A3010)(VOR)+(-)0(M1)(4;0)(A31P1)(VOR)

+(PHJI)0(M1,HB1)(3344;0)(A3110)(DETC,UMOR)
M1 RHO 4 2 #

(FX2,-GMH)00(3;0)(A201)(UVWS)

+(-)0(M1)(3;0)(A3010)(UOR)+(-)0(M1)(3;0)(A31P1)(UOR)

+(-)0(M1)(4;0)(A3010)(VOR)+(-)0(M1)(4;0)(A31P1)(VOR)

+(PHJO)0(M1,HB1)(3344;0)(A3110)(DETC,UMOR)

M1 ETOT 2 2 #

(GM1MK)00(3;0)(A201)0
M1 ETOT 4 2 #

(FX2,-GM1MK)00(3;0)(A201)0

M1 M2 2 2 #

(-GM1)00(3;0)(A201)(U2)

+(-)0(M1)(4;0)(A3010)(OSRH)

+(HBJ)0(M1,HB1)(3344;0)(A3110)(DETC,VORU)
M1 M2 3 2 #

00(M1)(4;0)(A3010)(OSRH)+00(M1)(4;0)(A31P1)(OSRH)

+(PHJI)0(M1,HB1)(3344;0)(A3110)(DETC,VORU)
M1 M2 4 2 #

(FX2,GM1)00(3;0)(A201)(U2)

+00(M1)(4;0)(A3010)(OSRH)+00(M1)(4;0)(A31P1)(OSRH)

+(PHJO)0(M1,HB1)(3344;0)(A3110)(DETC,VORU)

M2 RHO 2 2 #

(GMH)00(4;0)(A201)(UVWS)

+00(M2)(3;0)(A3010)(UOR)+00(M2)(4;0)(A3010)(VOR)

+(HBJ)0(M2,HB1)(3344;0)(A3110)(DETC,UMOR)
M2 RHO 3 2 #

(-)0(M2)(3;0)(A3010)(UOR)+(-)0(M2)(3;0)(A31P1)(UOR)

+(-)0(M2)(4;0)(A3010)(VOR)+(-)0(M2)(4;0)(A31P1)(VOR)

+(PHJI)0(M2,HB1)(3344;0)(A3110)(DETC,UMOR)
M2 RHO 4 2 #

(FX2,-GMH)00(4;0)(A201)(UVWS)

+(-)0(M2)(3;0)(A3010)(UOR)+(-)0(M2)(3;0)(A31P1)(UOR)

+(-)0(M2)(4;0)(A3010)(VOR)+(-)0(M2)(4,_)(A31P1)(VOR)

+(PHJO) 0(M2,HB1)(3344;0)(A3110)(DETC,UMOR)

M2 ETOT 2 2 #

(GMIMK)00(4;0)(A201)0
M2 ETOT 4 2 #

(FX2,-GM 1MK)00(4;0)(A201 )0

M2 M1 2 2 #

(-GM1)00(4;0)(A201)(U1)

+(-)0(M2)(3;0)(A3010)(OSRH)

+(HBJ)0(M2,HB1)(3344;0)(A3110)(DETC,UORU)
M2M13 2#

00(M2)(3;0)(A3010)(OSRH)+00(M2)(3;0)(A31P1)(OSRH)
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+(PHJI)0(M2,HB1)(3344;0)(A3110)(DETC,UORU)
M2 M1 4 2 #
(FX2,GM1)00(4;0)(A201)(U1)
+00(M2)(3;0)(A3010)(OSRH)+00(M2)(3;0)(A31P1)(OSRH)
+(PHJO)0(M2,HB1)(3344;0)(A3110)(DETC,UORU)

GROUPFREQUENCY
1

SOLUTIONTYPE
DELTA_Q
FACTORED_GAUSS_ELIMINATION
IMPLICIT_EULER

END
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AKCESS.AERO REMI template, quasi-Newton TP, d=3

INTEGRATION FACTORS

INITIAL_TIME

FINAL_TIME

PROBLEM_CONVERGENCE_CRITERIA

MAXIMUM_CHANG E_IN_Q__(DQ)

INITIAL_TIME_STEP

TIME_STEP_MULTIPLIER

MAXIMUM_TIME_STEP
CRITERIA TO RAISE_MAX_TIME_STEP

MAXIMUM_NUMBER_OF_STEPS

MAXIMUM_NUMBER_OF ITERATIONS PER_STEP

ITERATION_CONVERGENCE_CRITERIA

THETA IMPLICITNESS_FACTOR

MAXIMUM_VALUE_OF_ANY_DELTA_Q

TRANSFORMATION ARRAYS

ETKJ 1.

DETJ 1.
# DETE 0.

BOUNDARY CONDITIONS
RHO ETOT M1 M2 M3 PRSC # ORDER

DIR_RT D D 0 0 0 0 #DIRICHLET

DIR_M1 0 0 D 0 0 0 #DIRICHLET

DIR_M2 0 0 0 D 0 0 #DIRICHLET

DIR_M3 0 0 0 0 D 0 #DIRICHLET

DIR_PRS 0 0 0 0 0 D #DIRICHLET

THR_IN [3-3] [3 -3] [3 -3] [3 -3] [3 -31 0 # THROUGHFLOW

THR_OUT [4-4] [4 -41 [4-4] [4-4] [4-4] 0 # THROUGHFLOW

TITLE **** TEMPLATE FILE TEMP.CNS2D.REMI ****

CNS3D ALLMACH ALGORITHM, TENSOR MATRIX A JACOBIANS (2/23/93)

RESIDUALS

RHO 1 # VARBL, SET NO., # OF TERMS --- TEMPORAL SET (RHO)

000(;1)(C200)(-RHO)
RHO 2 # VARBL, SET NO., # OF TERMS --- SPATIAL SET (RHO)

(-)0(U1+U2+U3)(10203;0)(C3010)(RHO)+(-)0(U1+U2+U3)(40506;0)(C3020)(RHO)

+(-)0(U1+U2+U3)(70809;0)(C3030)(RHO)

+(HBR)0(UMHB)(112233;-1)(C3011)(RHO)

+(HBR)0(UMHB)(445566;-1)(C3022)(RHO)

+(HBR)0(UMHB)(778899;-1)(C3033)(RHO)

+(HBR)0(UMHB)(142536;-1)(C3021)(RHO)
+(HBR)0(UMHB)(142536;- 1)(C3012)(RHO)

+(HBR)0(UMHB)(172839;-1)(C3031)(RHO)

+(HBR)0(UMHB)(172839;-1)(C3013)(RHO)

+(HBR)0(UMHB)(475869;-1)(C3023)(RHO)

+(HBR)0(UMHB)(475869;-1)(C3032)(RHO)
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RHO 3 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (RHO)

00(Ul+U2+U3)(10203;0)(C3010)(RHO)+00(U1+U2+U3)(40506;0)(C3020)(RHO)

+00(Ul+U2+U3)(70809;0)(C3030)(RHO)
+00(Ul+U2+U3)(10203;0)(C31P1)(RHO)+00(U1+U2+U3)(40506;0)(C32P2)(RHO)

+00(Ul+U2+U3)(70809;0)(C33P3)(RHO)
RHO 4 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (RHO)

00(Ul+U2+U3)(10203;0)(C3010)(RHO)+00(U1+U2+U3)(40506;0)(C3020)(RHO)

+00(U1+U2+U3)(70809;0)(C3030)(RHO)

+00(U1+U2+U3)(10203;0)(C31P1)(RHO)+00(U1+U2+U3)(40506;0)(C32P2)(RHO)

+00(Ul+U2+U3)(70809;0)(C33P3)(RHO) ETOT 1 # VARBL, SET NO., # OF TERMS --- TEMPORAL

SET (ETOT)

000(;1)(C200)(-ETOT)
ETOT 2 # VARBL, SET NO., # OF TERMS --- SPATIAL SET (ETOT)

(-)0(Ul+U2+U3)(10203;0)(C3010)(EP)+(-)0(U1+U2+U3)(40506;0)(C3020)(EP)

+(-)0(U1+U2+U3)(70809;0)(C3030)(EP)

+(ZPEC,PEI)00(112233;-1)(C211)(TEMP)

+(ZPEC,PEI)00(445566;-1)(C222)(TEMP)

+(ZPEC,PEI)00(778899;-1)(C233)(TEMP)

+(ZPEC,PEI)00(142536;-1)(C221)(TEMP)

+(ZPEC,PEI)00(142536;-1)(C212)(TEMP)

+(ZPEC,PEI)00(172839;-1)(C231)(TEMP)

+(ZPEC,PEI)00(172839;-1)(C213)(TEMP)

+(ZPEC,PEI)00(475869;-1)(C223)(TEMP)

+(ZPEC,PEI)00(475869;-1)(C232)(TEMP)

+(HBR)0(UMHB)(112233;-1)(C3011)(ETOT)

+(HBR)0(UMHB)(445566;-1)(C3022)(ETOT)

+(HBR)0(UMHB)(778899;-1)(C3033)(ETOT)

+(HBR)0(UMHB)(142536;-1)(C3021)(ETOT)

+(HBR)0(UMHB)(142536;-1)(C3012)(ETOT)

+(HBR)0(UMHB)(172839;-1)(C3031)(ETOT)

+(HBR)0(UMHB)(172839;-1)(C3013)(ETOT)

+(HBR)0(UMHB)(475869;-1)(C3023)(ETOT)

+(HBR)0(UMHB)(475869;-1)(C3032)(ETOT)
ETOT 3 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (ETOT)

00(UI+U2+U3)(10203;0)(C3010)(EP)+00(Ul+U2+U3)(40506;0)(C3020)(EP)

+00(U1 +U2+U3)(70809;0)(C3030)(EP)
+00(U1+U2+U3)(10203;0)(C31P1)(EP)+00(U1+U2+U3)(40506;0)(C32P2)(EP)

+00(U1+U2+U3)(70809;0)(C33P3)(EP)
ETOT 4 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (ETOT)

00(Ul+U2+U3)(10203;0)(C3010)(EP)+00(Ul+U2+U3)(40506;0)(C3020)(EP)

+00(U1+U2+U3)(70809;0)(C3030)(EP)

+00(Ul+U2+U3)(10203;0)(C31P1)(EP)+00(U1+U2+U3)(40506;O)(C32P2)(EP)

+00(U1+U2+U3)(70809;0)(C33P3)(EP)

M1 1 # VARBL, SET NO., # OF TERMS --- TEMPORAL SET (M1)

000(;1)(C200)(-M1)
M1 2 # VARBL, SET NO., # OF TERMS--- SPATIAL SET (M1)

(-)0(U1+U2+U3)(10203;0)(C3010)(M1)+(-)0(U1+U2+U3)(40506;0)(C3020)(M1)

+(-)0(U1+U2+U3)(70809;0)(C3030)(M1)

+(EULER)00(1;0)(C201)(PRSC)+(EULER)00(4;0)(C202)(PRSC)

+(EULER)00(7;0)(C203)(PRSC)

+(PDUM2,REI)00(112233;-1)(C211)(U1)
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+(PDUM2,REI)00(445566;-1)(C222)(U1)
+(PDUM2,REI)00(778899;-1)(C233)(U1)
+(PDUM2,REI)00(142536;-1)(C221)(U1)
+(PDUM2,REI)00(142536;-1)(C212)(U1)
+(PDUM2,REI)00(172839;-1)(C231)(U1)
+(PDUM2,REI)00(172839;-1)(C213)(U1)
+(PDUM2,REI)00(475869;-1)(C223)(U1)
+(PDUM2,REI)00(475869;-1)(C232)(U1)
+(HBR)0(UMHB)(112233;-1)(C3011)(M1)
+(HBR)0(UMHB)(445566;-1)(C3022)(M1)
+(HBR)0(UMHB)(778899;-1)(C3033)(M1)
+(HBR)0(UMHB)(142536;-1)(C3021)(M1)
+(HBR)0(UMHB)(142536;-1)(C3012)(M1)
+(HBR)0(UMHB)(172839;-1)(C3031)(M1)
+(HBR)0(UMHB)(172839;-1)(C3013)(M1)
+(HBR)0(UMHB)(475869;-1)(C3023)(M1)
+(HBR)0(UMHB)(475869;-1)(C3032)(M1)
M1 3 # VARBL,SETNO.,#OFTERMS--- BOUNDARY SET (M1)

00(U1+U2+U3)(10203;0)(C3010)(M1)+00(U1+U2+U3)(40506;0)(C3020)(M1)

+00(U1+U2+U3)(70809;0)(C3030)(M1)

+00(U1+U2+U3)(10203;0)(C31P1)(M1)+00(U1+U2+U3)(40506;0)(C32P2)(M1)

+00(U1+U2+U3)(70809;0)(C33P3)(M1)

M1 4 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (M1)

00(U1+U2+U3)(10203;0)(C3010)(M1)+00(U1+U2+U3)(40506;0)(C3020)(M1)

+00(U1+U2+U3)(70809;0)(C3030)(M1)

+00(U1 +U2+U3)(10203;0)(C31P1)(M1)+00(Ul+U2+U3)(40506;0)(C32P2)(M1)

+00(U1+U2+U3)(70809;0)(C33P3)(M1)

M2 1 # VARBL, SET NO., # OF TERMS --- TEMPORAL SET (M2)

000(;1)(C200)(-M2)

M2 2 # VARBL, SET NO., # OF TERMS --- SPATIAL SET (M2)

(-)0(Ul+U2+U3)(10203;0)(C3010)(M2)+(-)0(Ul+U2+U3)(40506;0)(C3020)(M2)

+(-)0(Ul+U2+U3)(70809;0)(C3030)(M2)

+(EULER)00(2;0)(C201)(PRSC)+(EULER)00(5;0)(C202)(PRSC)

+(EULER)00(8;0)(C203)(PRSC)
+(PDUM2,REI)00(112233;-1)(C211)(U2)

+(PDUM2,REI)()0(445566;-1)(C222)(U2)

+(PDUM2,REI)00(778899;-1)(C233)(U2)

+(PDUM2,REI)00(142536;-1)(C221)(U2)

+(PDUM2,REI)00(142536;-1)(C212)(U2)

+(PDUM2,REI)00(172839;-1)(C231)(U2)

+(PDUM2,REI)0 0(172839;-1)(C213)(U2)

+(PDUM2,REI)0 0(475869;-1)(C223)(U2)

+(PDUM2,REI)00(475869;-1)(C232)(U2)

+(HBR)0(UMHB)(112233;-1)(C3011)(M2)

+(HBR)0(UMHB)(445566;-1)(C3022)(M2)

+(HBR)0(UMHB)(778899;-1)(C3033)(M2)

+(HBR)0(UMHB)(142536;-1)(C3021)(M2)

+(HBR)0(UMHB)(142536;-1)(C3012)(M2)

+(HBR)0(UMHB)(172839;- 1 )(C3031)(M2)

+(HBR)0(UMHB)(172839;-1)(C3013)(M2)

+(HBR)0(UMHB)(475869;-1)(C3023)(M2)

+(HBR)0(UMHB)(475869;-1)(C3032)(M2)
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M2 3 # VARBL,SETNO.,#OFTERMS--- BOUNDARY SET (M2)

00(U1 +U2+U3)(10203,0)(C3010)(M2)+00(U1+U2+U3)(40506;0)(C3020)(M2)

+00(U1 +U2+U3)(70809;0)(C3030)(M2)

+00(U1 +U2+U3)(10203;0)(C31P1)(M2)+00(Ul+U2+U3)(40506;0)(C32P2)(M2)

+00(U1 +U2+U3)(70809;0)(C33P3)(M2)

M2 4 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (M2)

00(Ul+U2+U3)(10203_)(C3010)(M2)+00(U1+U2+U3)(40506;0)(C3020)(M2)

+00(Ul+U2+U3)(70809;0)(C3030)(M2)

+00(U1+U2+U3)(10203;0)(C31P1)(M2)+00(Ul+U2+U3)(40506;0)(C32P2)(M2)

+00(U1+U2+U3)(70809;0)(C33P3)(M2)

M3 1 # VARBL, SET NO., # OF TERMS --- TEMPORAL SET (M3)

000(;1)(C200)(-M3)
M3 2 # VARBL, SET NO., # OF TERMS--- SPATIAL SET (M3)

(-)0(U1+U2+U3)(10203;0)(C3010)(M3)+(-)0(U1+U2+U3)(40506;0)(C3020)(M3)

+(-)0(Ul+U2+U3)(70809;0)(C3030)(M3)

+(EULER)00(3;0)(C201)(PRSC)+(EULER)00(6;0)(C202)(PRSC)

+(EULER)00(9;0)(C203)(PRSC)

+(PDUM2,REI)00(112233;-1)(C211)(U3)

+(PDUM2,REI)00(445566;-1)(C222)(U3)

+(PDUM2,REI)00(778899;-1)(C233)(U3)

+(PDUM2,REI)00(142536;-1)(C221)(U3)

+(PDUM2,REI)00(142536;-1)(C212)(U3)

+(PDUM2,REI)00(172839;-1)(C231)(U3)

+(PDUM2,REI)00(172839;-1)(C213)(U3)

+(PDUM2,REI)00(475869;-1)(C223)(U3)

+(PDUM2,REI)00(475869;-1)(C232)(U3)

+(HBR)0(UMHB)(112233;-1)(C3011)(M3)

+(HBR)0(UMHB)(445566;-1)(C3022)(M3)

+(HBR)0(UMHB)(778899;-1)(C3033)(M3)

+(HBR)0(UMHB)(142536;-1)(C3021)(M3)

+(HBR)0(UMHB)(142536;-1)(C3012)(M3)

+(HBR)0(UMHB)(172839;-1)(C3031)(M3)

+(HBR)0(UMHB)(172839;-1)(C3013)(M3)

+(HBR)0(UMHB)(475869;-1)(C3023)(M3)

+(HBR)0(UMHB)(475869;-1)(C3032)(M3)
M3 3 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (M3)

00(Ul+U2+U3)(10203;0)(C3010)(M3)+00(U1+U2+U3)(40506;0)(C3020)(M3)

+00(U1+U2+U3)(70809;0)(C3030)(M3)

+00(Ul+U2+U3)(10203;0)(C31P1)(M3)+00(U1+U2+U3)(40506;0)(C32P2)(M3)

+00(U1+U2+U3)(70809;0)(C33P3)(M3)
M3 4 # VARBL, SET NO., # OF TERMS --- BOUNDARY SET (M3)

00(Ul+U2+U3)(10203;0)(C3010)(M3)+00(U1+U2+U3)(40506;0)(C3020)(M3)

+00(U1+U2+U3)(70809;0)(C3030)(M3)
+00(U1 +U2+U3)(10203;0)(C31P1)(M3)+00(U1+U2+U3)(40506;0)(C32P2)(M3)

+00(U1 +U2+U3) (70809;0)(C33P3)(M3)
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JACOBIANS
#

# FACTORED JACOBIAN FOR DIRECTION 1 #
#

RHO RHO 1 1 # VARBL, VARDIF, SET, DIRECTION 1 #

000(;0)(A200)(DETJ)

RHO RHO 2 1 # VARBL, VARDIF, SET, DIRECTION 1 #

+(-)0(Ul+U2+U3)(10203;0)(A3010)0

+00(RHO)(1;0)(A3010)(UOR)+00(RHO)(2;0)(A3010)(VOR)

+00(RHO)(3;0)(A3010)(WOR)

+(HBJ)0(HB1,RHO)(112233;0)(A3110)(DETC,UMOR)

+(HBJ)0(UMHB)(112233;0)(A3011)(DETC)
RHO RHO 3 I #

00(U1+U2+U3)(10203;0)(A3010)0+00(Ul+U2+U3)(10203;0)(A31P1)0

+(-)0(RHO)(1;0)(A3010)(UOR)+(-)0(RHO)(1;0)(A31P1)(UOR)

+(-)0(RHO)(2;0)(A3010)(VOR)+(-)0(RHO)(2;0)(A31P1)(VOR)

+(-)0(RHO)(3;0)(A3010)(WOR)+(-)0(RHO)(3;0)(A31P1)(WOR)
RHO RHO 4 1 #

00(U1+U2+U3)(10203;0)(A3010)0+00(Ul+U2+U3)(10203;0)(A31Pl)0

+(-)0(RHO)(1;0)(A3010)(UOR)+(-)0(RHO)(1;0)(A31P1)(UOR)

+(-)0(RHO)(2;0)(A3010)(VOR)+(-)0(RHO)(2;0)(A31P1)(VOR)

+(-)0(RHO)(3;0)(A3010)(WOR)+(-)0(RHO)(3;0)(A31P1)(WOR)

ETOT ETOT 1 1 #

000(;0)(A200)(DETJ)
ETOT ETOT 2 1 #

(-)0(U1+U2+U3)(10203;0)(A3010)0

+(-GAM)0(U1+U2+U3)(10203;0)(A3010)0

+(ZPEC,PEI)00(112233;-1)(A211)0

+(HBJ)0(UMHB)(112233;0)(A3011)(DETC)
ETOT ETOT 3 1 #

00(U1+U2+U3)(10203;0)(A3010)0+00 (U1 +U2+U3)(10203;0)(A31P1)0

+(GAM)0(UI+U2+U3)(10203;0)(A3010)0+(GAM)0(UI+U2+U3)(10203;0)(A31P1)0
ETOT ETOT 4 1 #

00(Ul+U2+U3)(10203;0)(A3010)0+00(Ul+U2+U3)(10203;0)(A31P1)0

+(GAM)0(U1+U2+U3)(10203;0)(A3010)0+(GAM)0(U1+U2+U3)(10203;0)(A31P1)0

M1 M1 1 1 #

()00(;0)(A200)(DETJ)
M1 M1 2 1 #

+(-GMH)00(1;0)(A201)(U1)

+(-)0(M1)(1;0)(A3010)(OSRH)

+(-)0(UI+U2+U3)(10203;0)(A3010)0

+(PDUM2,REI)0(OSRH)(l12233;-1)(A3011)0

+(HBJ)0(HB1,M1 )(112233;0)(A3110)(DETC,UORU)

+(HBJ)0(UMHB)(112233;0)(A3011)(DETC)
M1 M1 3 1 #

00(M1)(1;0)(A3010)(OSRH)+00(M1)(1;0)(A31P1)(OSRH)

+00(Ul+U2+U3)(10203;0)(A3010)0+00(U1+U2+U3)(10203;0)(A31P1)0
M1 M1 4 1 #

(FX2,GMH)00(1;0)(A201)(U1)

+00(M1)(1;0)(A3010)(OSRH)+00(M1)(1;0)(A31P1)(OSRH)

155



APPENDIX D

+00(U1+U2+U3)(10203;0)(A3010)0+00(Ul+U2+U3)(10203;0)(A31P1)0
M1 M1 8 1 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M2 M2 I 1 #

000(;0)(A200)(DETJ)
M2 M2 2 1 #

+(-GMH)00(2;0)(A201)(U2)

+(-)0(M2)(2,_)(A3010)(OSRH)

+(-)0(U1+U2+U3)(10203;0)(A3010)0

+(PDUM2,REI)0(OSRH)(112233;-1)(A3011)0

+(HBJ)0(HB1,M2)(112233;0)(A3110)(DETC,VORU)

+(HBJ)0(UMHB)(112233;0)(A3011)(DETC)
M2 M2 3 1 #

00(M2)(2;0)(A3010)(OSRH)+00(M2)(2;0)(A31P1)(OSRH)

+00(U1+U2+U3)(10203;0)(A3010)0+00(U1+U2+U3)(10203;0)(A31P1)0
M2 M2 4 1 #

(FX2,GMH)00(2;0)(A201)(U2)

+00(M2)(2;0)(A3010)(OSRH)+00(M2)(2;0)(A31P1)(OSRH)

+00(U1+U2+U3)(10203;0)(A3010)0+00(U1+U2+U3)(10203;0)(A31P1)0
M2 M2 8 1 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M3 M3 1 1 #

000(;0)(A200)(DETJ)
M3 M3 2 1 #

+(-GMH)00(3;0)(A201)(U3)

+(-)0(M3)(3;0)(A3010)(OSRH)

+(-)0(Ul+U2+U3)(10203;0)(A3010)0

+(PDUM2,REI)0(OSRH)(l12233;-1)(A3011)0

+(HBJ)0(HB1,M3)(112233;0)(A3110)(DETC,WORU)

+(HBJ)0(UMHB)(112233;0)(A3011)(DETC)
M3 M3 3 1 #

00(M3)(3;0)(A3010)(OSRH)+00(M3)(3;0)(A31P1)(OSRH)

+00(U1+U2+U3)(10203;0)(A3010)0+00(U1+U2+U3)(10203;0)(A31P1)0
M3 M3 4 1 #

(FX2,GMH)00(3;0)(A201)(U3)

+00(M3)(3;0)(A3010)(OSRH)+00(M3)(3;0)(A31P1)(OSRH)

+00(U1+U2+U3)(10203;0)(A3010)0+00(U1+U2+U3)(10203;0)(A31P1)0
M3 M3 8 1 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

RHO M1 2 1 #

(-)0(RHO)(1;0)(A3010)(OSRH)

+(HBJ)0(HB1,RHO)(112233;0)(A3110)(DETC,UORU)
RHO M1 3 1 #

00(RHO)(1;0)(A3010)(OSRH)+00(RHO)(1;0)(A31P1)(OSRH)
RHO M1 4 1 #

00(RHO)(1;0)(A3010)(OSRH)+00(RHO)(1;0)(A31P1)(OSRH)

RHO M2 2 1 #

(-)0(RHO)(2;0)(A3010)(OSRH)
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+(HBJ)0(HB1,RHO)(112233;0)(A3110)(DETC,VORU)
RHO M2 3 1 #
00(RHO)(2;0)(A3010)(OSRH)+00(RHO)(2;0)(A31P1)(OSRH)
RHO M2 4 1 #
00(RHO)(2;0)(A3010)(OSRH)+00(RHO)(2;0)(A31P1)(OSRH)

RHOM3 2 1 #
(-)0(RHO)(3;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(112233;0)(A3110)(DETC,WORU)
RHOM3 3 1 #
00(RHO)(3;0)(A3010)(OSRH)+00(RHO)(3;0)(A31P1)(OSRH)
RHO M3 4 1 #
00(RHO)(3;0)(A3010)(OSRH)+00(RHO)(3;0)(A31P1)(OSRH)

ETOT RHO 2 1 #

00(EP)(1;0)(A3010)(UOR)+00(EP)(2;0)(A3010)(VOR)

+00(EP)(3;0)(A3010)(WOR)

+(HGMMKI)0(U1 +U2+U3)(10203;0)(A3010)(UVWS)

+(HBJ)0(HB1,ETOT)(112233;0)(A3110)(DETC,UMOR)
ETOT RHO 3 1 #

(-)0(EP)(1;0)(A3010)(UOR)+(-)0(EP)(1;0)(A31P1)(UOR)

+(-)0(EP)(2;O)(A3010)(VOR)+(-)0(EP)(2;0)(A31P1)(VOR)

+(-)0(EP)(3;0)(A3010)(WOR)+(-)0(EP)(3;0)(A31P1)(WOR)

+(-,HGMMKI)0(UI+U2+U3)(10203;0)(A3010)(UVWS)

+(-,HGMMKI)()(U1+U2+U3)(10203;0)(A31P1)(UVWS)
ETOT RHO 4 1 #

(-)0(EP)(1;O)(A3010)(UOR)+(-)0(EP)(1;0)(A31P1)(UOR)

+(-)0(EP)(2;0)(A3010)(VOR)+(-)0(EP)(2;0)(A31P1)(VOR)

+(-)0(EP)(3;0)(A3010)(WOR)+(-)0(EP)(3;0)(A31P1)(WOR)

+(-,HGMMKI)0(UI+U2+U3)(10203;0)(A3010)(UVWS)

+(NF2,-,HGMMKI)0(U1+U2+U3)(10203;0)(A31P1)(UVWS)

ETOT M1 2 1 #

(-)0(EP)(1;0)(A3010)(OSRH)

+(HBJ) 0(HB1,ETOT)(112233;0)(A3110)(DETC,UORU)

+(GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U1)
ETOT M1 3 1 #

00(EP)(1;0)(A3010)(OSRH)+00(EP)(1;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U1)

+(-GMMKI)0(Ul+U2+U3)(10203;0)(A31P1)(U1)

ETOT M1 4 1 #

00(EP)(1;0)(A3010)(OSRH)+00(EP)(1;0)(A31P1)(OSRH)

+(-GMMKI)0(U1 +U2+U3)(10203;0)(A3010)(U1)

+(NF2,-GMMKI)0(Ul+U2+U3)(10203;0)(A31P1)(U1)

ETOT M2 2 1 #

(-)0(EP)(2;0)(A3010)(OSRH)

+(HBJ)0(HB1,ETOT)(112233;0)(A3110)(DETC,VORU)

+(GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U2)

ETOT M2 3 1 #

00(EP)(2;0)(A3010)(OSRH)+00(EP)(2;0)(A31P1)(OSRH)

+(-GMMKI)0(U1 +U2+U3)(10203;0)(A3010)(U2)
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+(-GMMKI)0(Ul+U2+U3)(10203;0)(A31P1)(U2)
ETOT M2 4 1 #

00(EP)(2;0)(A3010)(OSRH)+00(EP)(2;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U2)

+(NF2,-GMMKI)0(U1+U2+U3)(10203;0)(A31P1)(U2)

ETOT M3 2 1 #

(-)0(EP)(3;0)(A3010)(OSRH)

+(HBJ)0(HB1,ETOT)(112233;0)(A3110)(DETC,WORU)

+(GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U3)
ETOT M3 3 1 #

00(EP)(3;0)(A3010)(OSRH)+00(EP)(3;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U3)

+(-GMMKI)0(U1+U2+U3)(10203;0)(A31P1)(U3)
ETOT M3 4 1 #

00(EP)(3;0)(A3010)(OSRH)+00(EP)(3;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(10203;0)(A3010)(U3)

+(NF2,-GMMKI)0(U1+U2+U3)(10203;0)(A31P1)(U3)

M1 RHO 2 1 #

(GMH)00(1;0)(A201)(UVWS)

+00(M1)(1;0)(A3010)(UOR)+00(M 1)(2;0)(A3010)(VOR)

+00(M1)(3;0)(A3010)(WOR)

+(HBJ)0(HB1,M1)(112233;0)(A3110)(DETC,UMOR)
M1 RHO 3 1 #

(-)0(M1)(1;0)(A3010)(UOR)+(-)0(M1)(1;0)(A31P1)(UOR)

+(-)0(M1)(2;0)(A3010)(VOR)+(-)0(M 1)(2;0)(A31P1)(VOR)

+(-)0(M1)(3;0)(A3010)(WOR)+(-)0(M1)(3;0)(A31P1)(WOR)
M1 RHO 4 1 #

(FX2,-GMH)00(1;0)(A201)(UVWS)

+(-)0(M1)(1;0)(A3010)(UOR)+(-)0(M1)(1;0)(A31P1)(UOR)

+(-)0(M1)(2;0)(A3010)(VOR)+(-)0(M1)(2;0)(A31P1)(VOR)

+(-)0(M1)(3;0)(A3010)(WOR)+(-)0(M1)(3;0)(A31P1)(WOR)

M1 ETOT 2 1 #

(GMIMK)00(1;0)(A201)0
M1 ETOT 4 1 #

(FX2,-GMIMK)00(1;0)(A201)0

M1 M2 2 1 #

(-GM1)00(1;0)(A201)(U2)

+(-)0(M1)(2;0)(A3010)(OSRH)

+(HBJ)0(HB1,M1)(112233;0)(A3110)(DETC,VORU)
M1 M231#

00(M1)(2;0)(A3010)(OSRH)+00(M1)(2;0)(A31P1)(OSRH)
M1 M2 4 1 #

(FX2,GM1)00(1;0)(A201)(U2)

+()0(M1)(2;0)(A3010)(OSRH)+00(M1)(2;0)(A31P1)(OSRH)

M1 M3 2 1 #

(-GM1)00(1;0)(A201)(U3)

+(-)0(M1)(3;0)(A3010)(OSRH)
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+(HBJ)0(HB1,M1)(112233;0)(A3110)(DETC,WORU)

M1 M331#

00(M1)(3;0)(A3010)(OSRH)+()0(M1)(3;0)(A31P1)(OSRH)
M1 M3 4 1 #

(FX2,GM1)00(1;0)(A201)(U3)

+00(M1)(3;0)(A3010)(OSRH)+00(M1)(3;0)(A31P1)(OSRH)

M2 RHO 2 1 #

(GMH)00(2;0)(A201)(UVWS)

+00(M2)(1,0)(A3010)(UOR)+00(M2)(2;0)(A3010)(VOR)

+00(M2)(3;0)(A3010)(WOR)

+(HBJ)0(HB1,M2)(112233;0)(A3110)(DETC,UMOR)
M2 RHO 3 1 #

(-)0(M2)(1;0)(A3010)(UOR)+(-)0(M2)(1;0)(A31P1)(UOR)

+(-)0(M2)(2;O)(A3010)(VOR)+(-)0(M2)(2;0)(A31P1)(VOR)

+(-)0(M2)(3;0)(A3010)(WOR)+(-)0(M2)(3;0)(A31P1)(WOR)
M2 RHO 4 1 #

(FX2,-GMH)00(2;0)(A201)(UVWS)

+(-)0(M2)(1;0)(A3010)(UOR)+(-) 0(M2)(1;0)(A31P1)(UOR)

+(-)0(M2)(2;O)(A3010)(VOR)+(-)0(M2)(2;0)(A31P1)(VOR)

+(-)0(M2)(3;0)(A3010)(WOR)+(-)0(M2)(3;0)(A31P1)(WOR)

M2 ETOT 2 1 #

(GMIMK)00(2;0)(A201)0
M2 ETOT 4 1 #

(FX2,-GM1MK)00(2;0)(A201)0

M2 M1 2 1 #

(-GM1)00(2;0)(A201)(U 1)

+(-)0(M2)(1;0)(A3010)(OSRH)

+(HBJ)0(HB1,M2)(112233;0)(A3110)(DETC,UORU)
M2 M1 3 1 #

00(M2)(1;0)(A3010)(OSRH)+00(M2)(1;0)(A31P1)(OSRH)
M2 M1 4 1 #

(FX2,GM1)00(2;0)(A201)(U1)

+00(M2)(1;0)(A3010)(OSRH)+00(M2)(1;0)(A31P1)(OSRH)

M2 M3 2 1 #

(-GM1)00(2;0)(A201)(U3)

+(-)0(M2)(3;0)(A3010)(OSRH)

+(HBJ)0(HB1,M2)(112233;0)(A3110)(DETC,WORU)
M2 M3 3 1 #

00(M2)(3;0)(A3010)(OSRH)+()0(M2)(3;0)(A31P1)(OSRH)
M2 M3 4 1 #

(FX2,GM1)00(2;0)(A201)(U3)

+00(M2)(3;0)(A3010)(OSRH)+00(M2)(3;0)(A31P1)(OSRH)

M3 RHO 2 1 #

(GMH)00(3;O)(A201)(UVWS)

+00(M3)(1;0)(A3010)(UOR)+00(M3)(2;0)(A3010)(VOR)

+00(M3)(3;0)(A3010)(WOR)

+(HBJ)0(HB1,M3)(112233;0)(A3110)(DETC,UMOR)
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M3 RHO 3 1 #

(-)0(M3)(1;0)(A3010)(UOR)+(-)0(M3)(1;0)(A31P1)(UOR)

+(-)0(M3)(2;O)(A3010)(VOR)+(-)0(M3)(2;0)(A31P1)(VOR)

+(-)0(M3)(3;O)(A3010)(WOR)+(-)0(M3)(3;0)(A31P1)(WOR)
M3 RHO 4 1 #

(FX2,-GMH)00 (3;0)(A201)(UVWS)

+(-)0(M3)(1;0)(A3010)(UOR)+(-)0(M3)(1;0)(A31P1)(UOR)

+(-)0(M3)(2;0) (A3010)(VOR)+(-)0(M3)(2;0)(A31P1)(VOR)

+(-)0(M3)(3;0)(A3010)(WOR)+(-)0(M3)(3;0)(A31P1)(WOR)

M3 ETOT 2 1 #

(GMIMK)00(3;0)(A201)0
M3 ETOT 4 1 #

(FX2,-GM 1MK)00(3;0)(A201 )0

M3 M1 2 1 #

(-GM1)00(3;0)(A201)(U1)

+(-)0(M3)(1;0)(A3010)(OSRH)

+(HBJ)0(HB1,M3)(112233;0)(A3110)(DETC,UORU)

M3 M1 3 1 #

00(M3)(1;0)(A3010)(OSRH)+00(M3)(1;0)(A31P1)(OSRH)
M3 M1 4 1 #

(FX2,GM1)00(3;0)(A201)(U1)

+00(M3)(1;O)(A3010)(OSRH)+00(M3)(1;0)(A31P1)(OSRH)

M3 M2 2 1 #

(-GM1)00(3;0)(A201)(U2)

+(-)0(M3)(2;0)(A3010)(OSRH)

+(HBJ)0(HB1,M3)(112233;0)(A3110)(DETC,VORU)
M3 M2 3 1 #

00(M3)(2;0)(A3010)(OSRH)+00(M3)(2;0)(A31P1)(OSRH)
M3 M2 4 1 #

(FX2,GM1)()0(3;0)(A201)(U2)

+00(M3)(2;0)(A3010)(OSRH)+00(M3)(2;0)(A31P1)(OSRH)

#

# FACTORED JACOBIAN FOR DIRECTION 2 #

#

RHO RHO 1 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2

000(;O)(A200)(DETJ)
RHO RHO 2 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2

+(-)0(Ul+U2+U3)(40506;0)(A3010)0
+00(RHO)(4;0)(A3010)(UOR)+00(RHO)(5;0)(A3010)(VOR)

+00(RHO)(6;0)(A3010)(WOR)

+(HBJ)0(HB1,RHO)(445566;0)(A3110)(DETC,UMOR)

+(HBJ)0(UMHB)(445566;0)(A3011)(DETC)
RHO RHO 3 2 # VARBL, VARDIF, SET, # OF TERMS, DIRECTION 2

00(Ul+U2+U3)(40506;0)(A3010)0+0 0(U1+U2+U3)(40506;0)(A31P1)0

+(-)0(RHO)(4;0)(A3010)(UOR)+(-)0(RHO)(4;0)(A31P1)(UOR)

+(-)0(RHO)(5;0)(A3010)(VOR)+(-)0(RHO)(5;0)(A31P1)(VOR)

+(-)0(RHO)(6;0)(A3010)(WOR)+(-)0(RHO)(6;0)(A31P1)(WOR)
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RHORHO 4 2 # VARBL,VARDIF,SET,#OFTERMS,DIRECTION2
00(U1+U2+U3)(40506,_)(A3010)0+00(U1+U2+U3)(40506;0)(A31P1)0
+(-)0(RHO)(4;0)(A3010)(UOR)+(-)0(RHO)(4;0)(A31P1)(UOR)
+(-)0(RHO)(5;0)(A3010)(VOR)+(-)0(RHO)(5;0)(A31P1)(VOR)
+(-)0(RHO)(6;0)(A3010)(WOR)+(-)0(RHO)(6;0)(A31P1)(WOR)

ETOT ETOT 1 2 #

000(;0)(A200)(DETJ)
ETOT ETOT 2 2 #

(-)0(U1+U2+U3)(40506;0)(A3010)0

+(-GAM)0(U1+U2+U3)(40506;0)(A3010)0

+(ZPEC,PEI)00(445566;-1)(A211)0

+(HBJ)0(UMHB)(445566;0)(A3011)(DETC)
ETOT ETOT 3 2 #

00(Ul+U2+U3)(40506;0)(A3010)0+00(Ul+U2+U3)(40506;0)(A31P1)0
+(GAM)0(Ul+U2+U3)(40506;0)(A3010)0+(GAM)0(Ul+U2+U3)(40506;0)(A31P1)0

ETOT ETOT 4 2 #

00(Ul+U2+U3)(40506;0)(A3010)0+00(Ul+U2+U3)(40506;0)(A31P1)0

+(GAM)0(Ul+U2+U3)(40506;0)(A3010)0+(GAM)()(Ul+U2+U3)(40506;0)(A31P1)0

M1 M1 1 2 #

000(;0)(A200)(DETJ)
M1 M1 2 2 #

+(-GMH)00(4;0)(A201)(U1)

+(-)0(M1)(4;0)(A3010)(OSRH)

+(-)0(Ul+U2+U3)(40506;0)(A3010)0

+(PDUM2,REI)0(OSRH)(445566;-1)(A3011)0

+(HBJ)0(HB1,M1)(445566;0)(A3110)(DETC,UORU)

+(HBJ)0(UMHB)(445566;0)(A3011)(DETC)
M1 M1 3 2 #

00(M1)(4;0)(A3010)(OSRH)+00(M1)(4;0)(A31P1)(OSRH)

+00(Ul+U2+U3)(40506;0)(A3010)0+00(U1+U2+U3)(40506;0)(A31P1)0
M1 M1 4 2 #

(FX2,GMH)00(4;0)(A201)(U1)

+00(M1)(4;0)(A3010)(OSRH)+00(M1)(4;0)(A31P1)(OSRH)

+00(Ul+U2+U3)(40506;0)(A3010)0+00(U1 +U2+U3)(40506;0)(A31P1)0
M1 M1 8 2 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M2 M2 1 2 #

000(;0)(A200)(DETJ)
M2 M2 2 2 #

+(-GMH)00(5;0)(A201)(U2)

+(-)0(M2)(5;0)(A3010)(OSRH)

+(-)()(Ul+U2+U3)(40506;0)(A3010)0

+(PDUM2,REI)()(OSRH)(445566;-1)(A3011)0

+(HBJ)0(HB1,M2) (445566;0)(A3110)(DETC,VORU)

+(HBJ)0(UMHB)(445566;0)(A3011)(DETC)
M2 M2 3 2 #

00(M2)(5;0)(A3010)(OSRH)+()0(M2)(5;0)(A31P1)(OSRH)

+0()(U1+U2+U3)(40506;0)(A3010)0+00(Ul+U2+U3)(40506;0)(A31P1)0
M2 M2 4 2 #
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(FX2,GMH)00(5;0)(A201)(U2)
+00(M2)(5;0)(A3010)(OSRH)+00(M2)(5;0)(A31P1)(OSRH)
+00(Ul+U2+U3)(40506;0)(A3010)0+00(U1+U2+U3)(40506;0)(A31P1)0
M2 M2 8 2 #
(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M3 M3 1 2 #
000(;0)(A200)(DETJ)
M3 M3 2 2 #

+(-GMH)00(6;0)(A201)(U3)
+(-)0(M3)(6;0)(A3010)(OSRH)
+(-)0(Ul+U2+U3)(40506;0)(A3010)0
+(PDUM2,REI)0(OSRH)(445566;-1)(A3011)0
+(HBJ)0(HB1,M3)(445566;0)(A3110)(DETC,WORU)
+(HBJ)0(UMHB)(445566;0)(A3011)(DETC)
M3 M3 3 2 #
00(M3)(6;0)(A3010)(OSRH)+00(M3)(6;0)(A31P1)(OSRH)
+00(U1+U2+U3)(40506;0)(A3010)0+00(U1+U2+U3)(40506;0)(A31P1)0
M3 M3 4 2 #
(FX2,GMH)00(6;0)(A201)(U3)
+00(M3)(6;0)(A3010)(OSRH)+00(M3)(6;0)(A31P1)(OSRH)
+00(U1+U2+U3)(40506;0)(A3010)0+00(U1+U2+U3)(40506;0)(A31P1)0
M3 M3 8 2 #
(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

RHO M1 2 2 #
(-)0(RHO)(4;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(445566;0)(A3110)(DETC,UORU)
RHO M1 3 2 #
00(RHO)(4;0)(A3010)(OSRH)+00(RHO)(4;0)(A31P1)(OSRH)
RHO M1 4 2 #
00(RHO)(4;0)(A3010)(OSRH)+00(RHO)(4;0)(A31P1)(OSRH)

RHO M2 2 2 #
(-)0(RHO)(5;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(445566;0)(A3110)(DETC,VORU)
RHO M2 3 2 #
00(RHO)(5;0)(A3010)(OSRH)+00(RHO)(5;0)(A31P1)(OSRH)
RHO M2 4 2 #
00(RHO)(5;0)(A3010)(OSRH)+00(RHO)(5;0)(A31P1)(OSRH)

RHO M3 2 2 #
(-)0(RHO)(6;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(445566;0)(A3110)(DETC,WORU)
RHO M3 3 2 #
00(RHO)(6;0)(A3010)(OSRH)+00(RHO)(6;0)(A31P1)(OSRH)
RHO M3 4 2 #
00(RHO)(6;0)(A3010)(OSRH)+00(RHO)(6;0)(A31P1)(OSRH)

ETOTRHO2 2 #
00(EP)(4;0)(A3010)(UOR)+00(EP)(5;0)(A3010)(VOR)
+00(EP)(6;0)(A3010)(WOR)
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+(HGMMKI)0(U1 +U2+U3)(40506;0)(A3010)(UVWS)

+(HBJ)0(HB1,ETOT)(445566;0)(A3110)(DETC,UMOR)
ETOTRHO 3 2 #

(-)0(EP)(4;0)(A3010)(UOR)+(-)0(EP)(4;0)(A31P1)(UOR)

+(-)0(EP)(5;0)(A3010)(VOR)+(-)0(EP)(5;0)(A31P1)(VOR)

+(-)0(EP)(6;0)(A3010)(WOR)+(-)0(EP)(6;0)(A31P1)(WOR)

+(-,HGMMKI)0(UI+U2+U3)(40506;0)(A3010)(UVWS)

+(-,HGMMKI)0(U1 +U2+U3)(40506;0)(A31P1)(UVWS)
ETOTRHO 4 2 #

(-)0(EP)(4;0)(A3010)(UOR)+(-)0(EP)(4;0)(A31P1)(UOR)

+(-)0(EP)(5;0)(A3010)(VOR)+(-)0(EP)(5;0)(A31P1)(VOR)

+(-)0(EP)(6;0)(A3010)(WOR)+(-)0(EP)(6;0)(A31P1)(WOR)

+(-,HGMMKI)0(UI+U2+U3)(40506;0)(A3010)(UVWS)

+(NF2,-,HGMMKI)()(Ul+U2+U3)(40506;0)(A31P1)(UVWS)

ETOT M1 2 2 #

(-)0(EP)(4;0)(A3010)(OSRH)

+(HBJ)()(HB1,ETOT)(445566;0)(A3110)(DETC,UORU)

+(GMMKI)0(U1 +U2+U3)(40506;0)(A3010)(U1)
ETOT M1 3 2 #

00(EP)(4;O)(A3010)(OSRH)+00(EP)(4,t})(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(40506;0)(A3010)(U1)

+(-GMMKI)0(UI+U2+U3)(40506;0)(A31P1)(U1)
ETOT M1 4 2 #

00(EP)(4;0)(A3010)(OSRH)+0(}(EP)(4;0)(A31P1)(OSRH)

+(-GMMKI)0(U1 +U2+U3)(40506;0)(A3010)(U1)

+(NF2,-GMMKI)0(U1+U2+U3)(40506;0)(A31P1)(U1)

ETOT M2 2 2 #

(-)0(EP)(5;0)(A3010)(OSRH)

+(HBJ)0(HB1 ,ETOT)(445566,_})(A3110)(DETC,VORU)

+(GMMKI)0(UI+U2+U3)(40506;0)(A3010)(U2)
ETOT M2 3 2 #

0()(EP)(5;0)(A3010)(OSRH)+00(EP)(5;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(40506;O)(A3010)(U2)
+(-GMMKI)0(U1+U2+U3)(40506;0)(A31P1)(U2)

ETOT M2 4 2 #

00(EP)(5;0)(A3010)(OSRH)+00(EP)(5;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(40506;0)(A3010)(U2)

+(NF2,-GMMKI)0(Ul+U2+U3)(40506;0)(A31P1)(U2)

ETOT M3 2 2 #

(-)0(EP)(6;0)(A3010)(OSRH)

+(HBJ)0(HB1,ETOT)(445566;0)(A3110)(DETC,WORU)

+(GMMKI)0(UI+U2+U3)(40506;0)(A3010)(U3)
ETOT M3 3 2 #

00(EP)(6;0)(A3010)(OSRH)+00(EP)(6;0)(A31P1)(OSRH)

+(-GMMKI)0(U 1+U2+U3)(40506;0)(A3010)(U3)

+(-GMMKI)()(U1+U2+U3)(40506;0)(A31P1)(U3)
ETOT M3 4 2 #

00(EP)(6;0)(A3010)(OSRH)+00(EP)(6;0)(A31 P1)(OSRH)

+(-GMMKI)0(U 1+U2+U3)(40506;0)(A3010)(U3)
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+(NF2,-GMMKI)0(U1+U2+U3)(40506;0)(A31P1)(U3)

M1 RHO 2 2 #
(GMH)00(4;0)(A201)(UVWS)
+00(M1)(4;0)(A3010)(UOR)+00(M1)(5;0)(A3010)(VOR)
+00(M1)(6;0)(A3010)(WOR)
+(HBJ)0(HB1,M1)(445566;0)(A3110)(DETC,UMOR)
M1 RHO 3 2 #
(-)0(M1)(4;0)(A3010)(UOR)+(-)0(M1)(4;0)(A31P1)(UOR)
+(-)0(M1)(5;0)(A3010)(VOR)+(-)0(M1)(5;0)(A31P1)(VOR)
+(-)0(M1)(6;0)(A3010)(WOR)+(-)0(M1)(6;0)(A31P1)(WOR)
M1 RHO4 2 #
(FX2,-GMH)00(4;0)(A201)(UVWS)
+(-)0(M1)(4;0)(A3010)(UOR)+(-)0(M1)(4;0)(A31P1)(UOR)
+(-)0(M1)(5;0)(A3010)(VOR)+(-)0(M1)(5;0)(A31P1)(VOR)
+(-)0(M1)(6;0)(A3010)(WOR)+(-)0(M1)(6;0)(A31P1)(WOR)

M1 ETOT22 #
(GMIMK)00(4;0)(A201)0
M1 ETOT4 2 #
(FX2,-GMIMK)00(4;0)(A201)0

M1 M2 2 2 #
(-GM1)00(4;0)(A201)(U2)
+(-)0(M1)(5;0)(A3010)(OSRH)
+(HBJ)0(HB1,M1)(445566;0)(A3110)(DETC,VORU)
M1 M2 3 2 #
00(M1)(5;0)(A3010)(OSRH)+00(M1)(5;0)(A31P1)(OSRH)
M1 M242#
(FX2,GM1)00(4;0)(A201)(U2)
+00(M1)(5;0)(A3010)(OSRH)+00(M1)(5;0)(A31P1)(OSRH)

M1 M3 2 2 #
(-GM1)00(4;0)(A201)(U3)
+(-)(}(M1)(6;0)(A3010)(OSRH)
+(HBJ)0(HB1,M1)(445566;0)(A3110)(DETC,WORU)
M1 M3 3 2 #
00(M1)(6;0)(A3010)(OSRH)+00(M1)(6;0)(A31P1)(OSRH)
M1 M3 4 2 #
(FX2,GM1)00(4;0)(A201)(U3)
+00(M1)(6;O)(A3010)(OSRH)+00(M1)(6;0)(A31P1)(OSRH)

M2 RHO2 2 #
(GMH)00(5;0)(A201)(UVWS)
+00(M2)(4;0)(A3010)(UOR)+00(M2)(5;0)(A3010)(VOR)
+00(M2)(6;0)(A3010)(WOR)
+(HBJ)0(HB1,M2)(445566;0)(A3110)(DETC,UMOR)
M2 RHO3 2 #
(-)0(M2)(4;0)(A3010)(UOR)+(-)0(M2)(4;0)(A31P1)(UOR)
+(-)O(M2)(5;O)(A3010)(VOR)+(-)O(M2)(5;O)(A31P1)(VOR)
+(-)0(M2)(6;0)(A3010)(WOR)+(-)0(M2)(6;0)(A31P1)(WOR)
M2 RHO4 2 #
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(FX2,-GMH)00(S;0)(A201)(UVWS)
+(-)0(M2)(4;0)(A3010)(UOR)+(-)0(M2)(4;0)(A31P1)(UOR)
+(-)0(M2)(5;0)(A3010)(VOR)+(-)0(M2)(5;0)(A31P1)(VOR)
+(_)0(M2)(6;0)(A3010)(WOR)+(-)0(M2)(6;0)(A31P1)(WOR)

M2ETOT 2 2 #

(GMIMK)0()(5;0)(A201)0
M2 ETOT 4 2 #

(FX2,-GMIMK)00(5;0)(A201)0

M2 M1 2 2 #

(-GM1)00(5;0)(A201)(U1)

+(-)0(M2)(4;0)(A3010)(OSRH)

+(HBJ) 0(HB1,M2)(445566;0)(A3110)(DETC,UORU)
M2M132#

00(M2)(4;0)(A3010)(OSRH)+00(M2)(4;0)(A31P1)(OSRH)
M2M142#

(FX2,GM1)00(5;0)(A201)(U1)
+00(M2)(4;0)(A3010)(OSRH)+00(M2)(4;0)(A31P1)(OSRH)

M2 M3 2 2 #

(-GM1)()0(5;0)(A201)(U3)

+(-)0(M2)(6;0)(A3010)(OSRH)

+(HBJ)0(HB1,M2)(445566;0)(A3110)(DETC,WORU)
M2 M3 3 2 #

00(M2)(6;0)(A3010)(OSRH)+00(M2)(6;0)(A31P1)(OSRH)
M2 M3 4 2 #

(FX2,GM1)00(5;0)(A201)(U3)
+00(M2)(6;0)(A3010)(OSRH)+00(M2)(6;0)(A31P1)(OSRH)

M3 RHO 2 2 #

(GMH)00(6;0)(A201)(UVWS)

+00(M3)(4;0)(A3010)(UOR)+00(M3)(5;0)(A3010)(VOR)

+00(M3)(6;0)(A3010)(WOR)

+(HBJ)0(HB1,M3)(445566;O)(A3110)(DETC,UMOR)
M3 RHO 3 2 #

(-)0(M3)(4;0)(A3010)(UOR)+(-)0(M3)(4;0)(A31P1)(UOR)

+(-)0(M3)(5;0)(A3010)(VOR)+(-)0(M3)(5;0)(A31P1)(VOR)

+(-)0(M3)(6;0)(A3010)(WOR)+(-)0(M3)(6;0)(A31P1)(WOR)

M3 RHO 4 2 #

(FX2,-GMH)()0(6;0)(A201)(UVWS)

+(-)0(M3)(4;0)(A3010)(UOR)+(-)0(M3)(4;0)(A31P1)(UOR)

+(-)0(M3)(5;0)(A3010)(VOR)+(-)0(M3)(5;0)(A31P1)(VOR)

+(-)0(M3)(6;0) (A3010)(WOR)+(-)0(M3)(6;0)(A31P1)(WOR)

M3 ETOT 2 2 #

(GM1MK)00(6;0)(A201)0
M3 ETOT 4 2 #

(FX2,-GMIMK)00(6;0)(A201)0

M3M1 22#

(-GM1)0()(6;0)(A201)(U1)
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+(-)0(M3)(4;0)(A3010)(OSRH)
+(HBJ)0(HB1,M3)(445566;0)(A3110)(DETC,UORU)
M3 M1 3 2 #
00(M3)(4;0)(A3010)(OSRH)+00(M3)(4;0)(A31P1)(OSRH)
M3 M1 4 2 #
(FX2,GM1)00(6;0)(A201)(U1)
+00(M3)(4;0)(A3010)(OSRH)+00(M3)(4;0)(A31P1)(OSRH)

M3 M2 2 2 #
(-GM1)00(6;0)(A201)(U2)
+(-)0(M3)(5;0)(A3010)(OSRH)
+(HBJ)0(HB1,M3)(445566;0)(A3110)(DETC,VORU)
M3 M2 3 2 #
00(M3)(5;0)(A3010)(OSRH)+00(M3)(5;0)(A31P1)(OSRH)
M3 M2 4 2 #
(FX2,GM1)00(6;0)(A201)(U2)
+00(M3)(5;0)(A3010)(OSRH)+00(M3)(5;0)(A31P1)(OSRH)

#

# FACTORED JACOBIAN FOR DIRECTION 3 #
#

RHO RHO 1 3 # VARBL, VARDIF, SET, DIRECTION 3 #

000(;0)(A200)(DETJ)
RHO RHO 2 3 # VARBL, VARDIF, SET, DIRECTION 3 #

+(-)0(U1+U2+U3)(70809;0)(A3010)0

+00(RHO)(7;0)(A3010)(UOR)+00(RHO)(8;0)(A3010)(VOR)

+00(RHO)(9;0)(A3010)(WOR)

+(HBJ)0(HB1,RHO)(778899;0)(A3110)(DETC,UMOR)

+(HBJ)0(UMHB)(778899;0)(A3011)(DETC)
RHO RHO 3 3 # VARBL, VARDIF, SET, DIRECTION 3 #

00(Ul+U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0

+(-)0(RHO)(7;0)(A3010)(UOR)+(-)0(RHO)(7;0)(A31P1)(UOR)

+(-)0(RHO)(8;0)(A3010)(VOR)+(-)0(RHO)(8;0)(A31P1)(VOR)

+(-)0(RHO)(9;0)(A3010)(WOR)+(-)0(RHO)(9;0)(A31P1)(WOR)
RHO RHO 4 3 # VARBL, VARDIF, SET, DIRECTION 3 #

00(U1+U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0

+(-)0(RHO)(7;0)(A3010)(UOR)+(-)0(RHO)(7;0)(A31P1)(UOR)

+(-)0(RHO)(8;0)(A3010)(VOR)+(-)0(RHO)(8;0)(A31P1)(VOR)

+(-)0(RHO)(9;0)(A3010)(WOR)+(-)0(RHO)(9;0)(A31P1)(WOR)

ETOT ETOT 1 3 #

000(;0)(A200)(DETJ)
ETOT ETOT 2 3 #

+(-)0(U1 +U2+U3)(70809;0)(A3010)0

+(-GAM)0(Ul+U2+U3)(70809;0)(A3010)0

+(ZPEC,PEI)00(778899;-1)(A211)0

+(HBJ)0(UMHB)(778899;0)(A3011)(DETC)
ETOT ETOT 3 3 #

00(U1 +U2+U3)(70809;0)(A3010)0+00(U1 +U2+U3)(70809;0)(A31P1)0

+(GAM)0(U1 +U2+U3)(70809;0)(A3010)0+(GAM)0(Ul+U2+U3)(70809;0)(A31P1)0
ETOT ETOT 4 3 #
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00(U1+U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0

+(GAM)0(U1+U2+U3)(70809;0)(A3010)0+(GAM)0(U1+U2+U3)(70809;0)(A31P1)0

M1 M1 1 3 #

000(;0)(A200)(DETJ)
M1 M1 2 3 #

+(-GMH)00(7;0)(A201)(U1)

+(-)0(M1)(7;0)(A3010)(OSRH)

+(-)0(U1+U2+U3)(70809;0)(A3010)0

+(PDUM2,REI)0(OSRH)(778899;-1 )(A3011)0

+(HBJ)0(HB1,M1)(778899;0)(A3110)(DETC,UORU)

+(HBJ)0(UMHB)(778899;0)(A3011)(DETC)
M1 M1 3 3 #

00(M1)(7;0)(A3010)(OSRH)+00(M1)(7;0)(A31P1)(OSRH)

+00(U1 +U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0
M1 M1 4 3 #

(FX2,GMH)00(7;0)(A201)(U1)

+00(M1)(7;0)(A3010)(OSRH)+00(M1)(7;0)(A31P1)(OSRH)

+00(U1 +U2+U3)(70809;0)(A3010)0+00(Ul+U2+U3)(70809;0)(A31P1)0
M1 M1 8 3 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M2 M2 1 3 #

000(;0)(A200)(DETJ)
M2 M2 2 3 #

+(-GMH)00(8;0)(A201)(U2)

+(-)0(M2)(8;0)(A3010)(OSRH)

+(-)0(U1+U2+U3)(70809;0)(A3010)0

+(PDUM2,REI)0(OSRH)(778899;-1)(A3011)0

+(HBJ)0(HB1,M2)(778899;0)(A3110)(DETC,VORU)

+(HBJ)0(UMHB)(778899;0)(A3011)(DETC)
M2 M2 3 3 #

00(M2)(8;0)(A3010)(OSRH)+00(M2)(8;0)(A31P1)(OSRH)
+00(U1+U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0

M2 M2 4 3 #

(FX2,GMH)00(8;0)(A201)(U2)

+00(M2)(8;0)(A3010)(OSRH)+00(M2)(8;0)(A31P1)(OSRH)

+00(U1+U2+U3)(70809;0)(A3010)0+00(U1 +U2+U3)(70809;0)(A31P1)0
M2 M2 8 3 #

(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

M3 M3 1 3 #

0()0(;0)(A200)(DETJ)
M3 M3 2 3 #

+(-GMH)00(9;0)(A201)(U3)

+(-)0(M3)(9;0)(A3010)(OSRH)

+(-)0(U1+U2+U3)(70809;0)(A3010)0

+(PDUM2,REI)0(OSRH)(778899;-1)(A3011)0

+(HBJ)0(HB1,M3)(778899;0)(A3110)(DETC,WORU)

+(HBJ)0(UMHB)(778899;0)(A3011) (DETC)
M3 M3 3 3 #

00(M3)(9;0)(A3010)(OSRH)+00(M3)(9;0)(A31P1)(OSRH)
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+00(U1+U2+U3)(70809;0)(A3010)0+00(Ul+U2+U3)(70809;0)(A31P1)0
M3 M3 4 3 #
(FX2,GMH)00(9;0)(A201)(U3)
+00(M3)(9;0)(A3010)(OSRH)+00(M3)(9;0)(A31P1)(OSRH)
+00(U1+U2+U3)(70809;0)(A3010)0+00(U1+U2+U3)(70809;0)(A31P1)0
M3 M3 8 3 #
(PDUM2,REI)0(YPLS)(;0)(A200)(DETJ)

RHO M1 2 3 #
(-)0(RHO)(7;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(778899;0)(A3110)(DETC,UORU)
RHO M1 3 3 #
00(RHO)(7;0)(A3010)(OSRH)+00(RHO)(7;0)(A31P1)(OSRH)
RHO M1 4 3 #
00(RHO)(7;0)(A3010)(OSRH)+00(RHO)(7;0)(A31P1)(OSRH)

RHOM2 2 3 #
(-)0(RHO)(8;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(778899;0)(A3110)(DETC,VORU)
RHOM2 3 3 #
00(RHO)(8;0)(A3010)(OSRH)+00(RHO)(8;0)(A31P1)(OSRH)
RHOM2 4 3 #
00(RHO)(8;0)(A3010)(OSRH)+00(RHO)(8;0)(A31P1)(OSRH)

RHOM3 2 3 #
(-)0(RHO)(9;0)(A3010)(OSRH)
+(HBJ)0(HB1,RHO)(778899;0)(A3110)(DETC,WORU)
RHO M3 3 3 #
00(RHO)(9;0)(A3010)(OSRH)+00(RHO)(9;0)(A31P1)(OSRH)
RHOM3 4 3 #
()0(RHO)(9;0)(A3010)(OSRH)+00(RHO)(9;0)(A31P1)(OSRH)

ETOTRHO2 3 #
00(EP)(7;0)(A3010)(UOR)+00(EP)(8;0)(A3010)(VOR)
+00(EP)(9;0)(A3010)(WOR)
+(HGMMKI)0(UI+U2+U3)(70809;0)(A3010)(UVWS)
+(HBJ)0(HB1,ETOT)(778899;0)(A3110)(DETC,UMOR)
ETOTRHO3 3 #
(-)0(EP)(7;0)(A3010)(UOR)+(-)0(EP)(7;0)(A31P1)(UOR)
+(-)0(EP)(8;0)(A3010)(VOR)+(-)0(EP)(8;0)(A31P1)(VOR)
+(-)0(EP)(9;0)(A3010)(WOR)+(-)0(EP)(9;0)(A31P1)(WOR)
+(-,HGMMKI)0(U1+U2+U3)(70809;0)(A3010)(UVWS)
+(-,HGMMKI)0(U1+U2+U3)(70809;0)(A31P1)(UVWS)
ETOTRHO4 3 #
(-)0(EP)(7;0)(A3010)(UOR)+(-)0(EP)(7;0)(A31P1)(UOR)
+(-)0(EP)(8;0)(A3010)(VOR)+(-)0(EP)(8;0)(A31P1)(VOR)
+(-)0(EP)(9;O)(A3010)(WOR)+(-)0(EP)(9;0)(A31P1)(WOR)
+(-HGMMKI)0(U1+U2+U3)(70809;0)(A3010)(UVWS)
+(NF2,-,HGMMKI)0(U1+U2+U3)(70809;0)(A31P1)(UVWS)

ETOTM1 2 3 #
(-)0(EP)(7;0)(A3010)(OSRH)
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+(HBJ) 0(HB1,ETOT)(778899;0)(A3110)(DETC,UORU)

+(GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U1)
ETOT M1 3 3 #

00(EP)(7;0)(A3010)(OSRH)+00(EP)(7;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U1)

+(-GMMKI)0(U1+U2+U3)(70809;0)(A31P1)(U1)
ETOT M1 4 3 #

00(EP)(7;0)(A3010)(OSRH)+00(EP)(7;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U1)

+(NF2,-GMMKI)0(U1+U2+U3)(70809;0)(A31P1)(U1)

ETOT M2 2 3 #

(-)0(EP)(8;0)(A3010)(OSRH)

+(HBJ)0(HB1,ETOT)(778899;0)(A3110)(DETC,VORU)

+(GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U2)
ETOT M2 3 3 #

00(EP)(8;0)(A3010)(OSRH)+00(EP)(8;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U2)

+(-GMMKI)0(Ul+U2+U3)(70809;0)(A31P1)(U2)
ETOT M2 4 3 #

00(EP)(8;0)(A3010)(OSRH)+00(EP)(8;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U2)

+(NF2,-GMMKI)0(UI+U2+U3)(70809;0)(A31P1)(U2)

ETOT M3 2 3 #

(-)0(EP)(9;0)(A3010)(OSRH)

+(HBJ)0(HB1,ETOT)(778899;0)(A3110)(DETC,WORU)

+(GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U3)
ETOT M3 3 3 #

00(EP)(9;0)(A3010)(OSRH)+00(EP)(9;0)(A31 P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U3)

+(-GMMKI)0(U1+U2+U3)(70809;0)(A31P1)(U3)
ETOT M3 4 3 #

00(EP)(9;0)(A3010)(OSRH)+00(EP)(9;0)(A31P1)(OSRH)

+(-GMMKI)0(UI+U2+U3)(70809;0)(A3010)(U3)

+(NF2,-GMMKI)0(U1+U2+U3)(70809;0)(A31P1)(U3)

M1 RHO 2 3 #

(GMH)00(7;0)(A201)(UVWS)

+()0(M1)(7;0)(A3010)(UOR)+00(M 1)(8;0)(A3010)(VOR)

+00(M1)(9;0)(A3010)(WOR)

+(HBJ)0(HB1,M1)(778899;0)(A3110)(DETC,UMOR)

M1 RHO 3 3 #

(-)0(M1)(7;0)(A3010)(UOR)+(-)0(M1)(7;0)(A31P1)(UOR)

+(-)0(M1)(8;0)(A3010)(VOR)+(-)0(M1)(8;0)(A31P1)(VOR)

+(-)0(M1)(9;0)(A3010)(WOR)+(-)0(M1)(9;0)(A31P1)(WOR)

M1 RHO 4 3 #

(FX2,-GMH)00(7;0)(A201)(UVWS)

+(-)0(M1)(7;0)(A3010)(UOR)+(-)0(M1)(7;0)(A31P1)(UOR)

+(-)0(M1)(8;0)(A3010)(VOR)+(-)0(M1)(8;0)(A31P1)(VOR)

+(-)0(M1)(9;0)(A3010)(WOR)+(-)0(M1)(9;0)(A31P1)(WOR)
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M1 ETOT 2 3 #

(GMIMK)00(7;0)(A201)0
M1 ETOT 4 3 #

(FX2,-GM1MK)00(7;0)(A201)0

M1 M2 2 3 #

(-GM1)00(7;0)(A201)(U2)

+(-)0(M1)(8;0)(A3010)(OSRH)

+(HBJ)0(HB1,M1)(778899;0)(A3110)(DETC,VORU)
M1 M2 3 3 #

00(M1)(8;0)(A3010)(OSRH)+00(M1)(8;0)(A31P1)(OSRH)

M1 M2 4 3 #

(FX2,GM1)00(7;0)(A201)(U2)

+00(M1)(8;0)(A3010)(OSRH)+00(M1)(8;0)(A31P1)(OSRH)

M1 M3 2 3 #

(-GM1)00(7;0)(A201)(U3)

+(-)0(M1)(9;0)(A3010)(OSRH)

+(HBJ)0(HB1,M1)(778899;0)(A3110)(DETC,WORU)
M1 M3 3 3 #

00(M1)(9;0)(A3010)(OSRH)+00(M1)(9;0)(A31P1)(OSRH)
M1 M3 4 3 #

(FX2,GM1)00(7;0)(A201)(U3)

+00(M1)(9;0)(A3010)(OSRH)+00(M1)(9;0)(A31P1)(OSRH)

M2 RHO 2 3 #

(GMH)00(8;0)(A201)(UVWS)

+00(M2)(7;0)(A3010)(UOR)+00(M2)(8;0)(A3010)(VOR)

+00(M2)(9;0)(A3010)(WOR)

+(HBJ)0(HB1,M2)(778899;0)(A3110)(DETC,UMOR)
M2 RHO 3 3 #

(-)0(M2)(7;0)(A3010)(UOR)+(-)0(M2)(7;0)(A31P1)(UOR)

+(-)0(M2)(8;0)(A3010)(VOR)+(-)0(M2)(8;0)(A31P1)(VOR)

+(-)0(M2)(9;0)(A3010)(WOR)+(-)0(M2)(9;0)(A31P1)(WOR)
M2 RHO 4 3 #

(FX2,-GMH)00(8;0)(A201)(UVWS)

+(-)0(M2)(7;0)(A3010)(UOR)+(-)0(M2)(7;0)(A31P1)(UOR)

+(-)0(M2)(8;0)(A3010)(VOR)+(-)0(M2)(8;0)(A31P1)(VOR)

+(-)0(M2)(9;0)(A3010)(WOR)+(-)0(M2)(9;0)(A31 P1)(WOR)

M2 ETOT 2 3 #

(GMIMK)00(8;0)(A201)0
M2 ETOT 4 3 #

(FX2,-GM1MK)00(8;0)(A201)0

M2 M1 2 3 #

(-GM1)()0(8;0)(A201)(U1)

+(-)0(M2)(7;0)(A3010)(OSRH)

+(HBJ)0(HB1 ,M2)(778899;0)(A3110) (DETC,UORU)
M2M1 33#

00(M2)(7;0)(A3010)(OSRH)+00(M2)(7;0)(A31P1)(OSRH)
M2M1 43#
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(FX2,GM1)00(8;0)(A201)(U1)
+00(M2)(7;0)(A3010)(OSRH)+00(M2)(7;0)(A31P1)(OSRH)

M2 M3 2 3 #
(-GM1)00(8;0)(A201)(U3)
+(-)0(M2)(9;0)(A3010)(OSRH)
+(HBJ)0(HB1,M2)(778899;0)(A3110)(DETC,WORU)
M2 M3 3 3 #
00(M2)(9;0)(A3010)(OSRH)+00(M2)(9;0)(A31P1)(OSRH)
M2 M3 4 3 #
(FX2,GM1)00(8;0)(A201)(U3)
+00(M2)(9;0)(A3010)(OSRH)+00(M2)(9;0)(A31P1)(OSRH)

M3 RHO2 3 #
(GMH)00(9;0)(A201)(UVWS)
+00(M3)(7;0)(A3010)(UOR)+00(M3)(8;0)(A3010)(VOR)
+00(M3)(9;0)(A3010)(WOR)
+(HBJ)0(HB1,M3)(778899;0)(A3110)(DETC,UMOR)
M3 RHO3 3 #
(-)0(M3)(7;0)(A3010)(UOR)+(-)0(M3)(7;0)(A31P1)(UOR)
+(-)0(M3)(8;0)(A3010)(VOR)+(-)0(M3)(8;0)(A31P1)(VOR)
+(-)0(M3)(9;0)(A3010)(WOR)+(-)0(M3)(9;0)(A31P1)(WOR)
M3 RHO4 3 #
(FX2,-GMH)00(9;0)(A201)(UVWS)
+(-)0(M3)(7;0)(A3010)(UOR)+(-)0(M3)(7;0)(A31P1)(UOR)
+(-)0(M3)(8;O)(A3010)(VOR)+(-)0(M3)(8;0)(A31P1)(VOR)
+(-)0(M3)(9;0)(A3010)(WOR)+(-)0(M3)(9;0)(A31P1)(WOR)

M3 ETOT2 3 #
(GMIMK)00(9;0)(A201)0
M3 ETOT4 3 #
(FX2,-GMIMK)00(9;0)(A201)0

M3 M1 2 3 #
(-GM1)00(9;0)(A201)(U1)
+(-)0(M3)(7;0)(A3010)(OSRH)
+(HBJ)0(HB1,M3)(778899;0)(A3110)(DETC,UORU)
M3M1 33#
00(M3)(7;0)(A3010)(OSRH)+00(M3)(7;0)(A31P1)(OSRH)
M3 M1 4 3 #
(FX2,GM1)00(9;0)(A201)(U1)
+00(M3)(7;0)(A3010)(OSRH)+00(M3)(7;0)(A31P1)(OSRH)

M3 M2 2 3 #

(-GM1)00(9;0)(A201)(U2)

+(-)0(M3)(8;0)(A3010)(OSRH)

+(HBJ)()(HB1,M3)(778899;0)(A3110)(DETC,VORU)
M3 M2 3 3 #

00(M3)(8;0)(A3010)(OSRH)+00(M3)(8;0)(A31P1)(OSRH)
M3 M2 4 3 #

(FX2,GM1)00(9;0)(A201)(U2)

+00(M3)(8;0)(A3010)(OSRH)+00(M3)(8;0)(A31P1)(OSRH)
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GROUP FREQUENCY

1

SOLUTION TYPE

DELTA Q

FACTORED_GAUSS_ELIMINATION

IMPLICIT_EULER

END
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